# ---- Results ----
# ---- Quast descriptive stats ----
table1(~`# contigs (>= 0 bp)` + N50 + L50 + `Largest contig` + `Total length (>= 0 bp)`, data= quast_wgs)
Overall (N=84) |
|
---|---|
# contigs (>= 0 bp) | |
Mean (SD) | 120 (333) |
Median [Min, Max] | 45.0 [19.0, 2590] |
N50 | |
Mean (SD) | 585000 (417000) |
Median [Min, Max] | 390000 [20900, 1640000] |
L50 | |
Mean (SD) | 3.24 (4.36) |
Median [Min, Max] | 3.00 [1.00, 39.0] |
Largest contig | |
Mean (SD) | 883000 (367000) |
Median [Min, Max] | 836000 [77900, 1640000] |
Total length (>= 0 bp) | |
Mean (SD) | 2640000 (291000) |
Median [Min, Max] | 2660000 [1830000, 3470000] |
table1(~`# contigs (>= 0 bp)` + N50 + L50 + `Largest contig` + `Total length (>= 0 bp)`, data= quast_wgs_filtered)
Overall (N=84) |
|
---|---|
# contigs (>= 0 bp) | |
Mean (SD) | 48.4 (137) |
Median [Min, Max] | 20.0 [7.00, 1100] |
N50 | |
Mean (SD) | 585000 (417000) |
Median [Min, Max] | 390000 [20900, 1640000] |
L50 | |
Mean (SD) | 3.24 (4.36) |
Median [Min, Max] | 3.00 [1.00, 39.0] |
Largest contig | |
Mean (SD) | 883000 (367000) |
Median [Min, Max] | 836000 [77900, 1640000] |
Total length (>= 0 bp) | |
Mean (SD) | 2610000 (276000) |
Median [Min, Max] | 2650000 [1830000, 3230000] |
# ---- Quast descriptive stats ----
table1(~`# contigs (>= 0 bp)` + N50 + L50 + `Largest contig` + `Total length (>= 0 bp)`, data= quast_wgs_filtered)
Overall (N=84) |
|
---|---|
# contigs (>= 0 bp) | |
Mean (SD) | 48.4 (137) |
Median [Min, Max] | 20.0 [7.00, 1100] |
N50 | |
Mean (SD) | 585000 (417000) |
Median [Min, Max] | 390000 [20900, 1640000] |
L50 | |
Mean (SD) | 3.24 (4.36) |
Median [Min, Max] | 3.00 [1.00, 39.0] |
Largest contig | |
Mean (SD) | 883000 (367000) |
Median [Min, Max] | 836000 [77900, 1640000] |
Total length (>= 0 bp) | |
Mean (SD) | 2610000 (276000) |
Median [Min, Max] | 2650000 [1830000, 3230000] |
# Presence of AMP related genes
# Prevalence AMPs
table1(~mic_sau + mic_sub+sau_inhibition_category+sub_inhibition_category+case_control+aip_1+aip_2+aip_3+aip_4+sactipeptides+subtilosin_a+putative_bacteriocin_193+putative_bacteriocin_194|wgs_species_3,data=subset(metadata_bagel,metadata_bagel$wgs_species_3!="SAU"))
SCH (N=21) |
SCO (N=1) |
SDEV (N=2) |
SEQ (N=1) |
SHAEM (N=19) |
SPXYL (N=5) |
MSC (N=6) |
SSUC (N=12) |
SXYL (N=13) |
Overall (N=80) |
|
---|---|---|---|---|---|---|---|---|---|---|
mic_sau | ||||||||||
Mean (SD) | 3.32 (0.497) | 4.59 (NA) | 4.29 (0.297) | NA (NA) | 3.97 (0.649) | 3.06 (0.522) | 3.33 (0.560) | 2.92 (0.692) | 3.05 (0.394) | 3.37 (0.676) |
Median [Min, Max] | 3.25 [2.59, 4.51] | 4.59 [4.59, 4.59] | 4.29 [4.08, 4.50] | NA [NA, NA] | 4.14 [2.16, 4.66] | 3.01 [2.61, 3.93] | 3.49 [2.60, 4.03] | 3.03 [1.92, 4.11] | 2.90 [2.71, 4.09] | 3.24 [1.92, 4.66] |
Missing | 2 (9.5%) | 0 (0%) | 0 (0%) | 1 (100%) | 4 (21.1%) | 0 (0%) | 0 (0%) | 1 (8.3%) | 0 (0%) | 8 (10.0%) |
mic_sub | ||||||||||
Mean (SD) | 3.06 (0.604) | NA (NA) | 3.29 (0.297) | NA (NA) | 3.51 (0.775) | 3.06 (0.522) | 3.49 (0.480) | 2.92 (0.931) | 3.05 (0.698) | 3.13 (0.687) |
Median [Min, Max] | 3.00 [2.51, 5.18] | NA [NA, NA] | 3.29 [3.08, 3.50] | NA [NA, NA] | 3.71 [2.16, 4.27] | 3.01 [2.61, 3.93] | 3.59 [2.60, 4.03] | 2.58 [1.65, 4.14] | 2.93 [1.71, 4.09] | 3.10 [1.65, 5.18] |
Missing | 2 (9.5%) | 1 (100%) | 0 (0%) | 1 (100%) | 13 (68.4%) | 0 (0%) | 0 (0%) | 1 (8.3%) | 0 (0%) | 18 (22.5%) |
sau_inhibition_category | ||||||||||
11-20 | 2 (9.5%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 (20.0%) | 1 (16.7%) | 0 (0%) | 6 (46.2%) | 10 (12.5%) |
21-30 | 2 (9.5%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 (5.3%) | 2 (40.0%) | 0 (0%) | 3 (25.0%) | 2 (15.4%) | 10 (12.5%) |
31-40 | 6 (28.6%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 (16.7%) | 0 (0%) | 3 (23.1%) | 10 (12.5%) |
41-50 | 4 (19.0%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 (5.3%) | 0 (0%) | 2 (33.3%) | 2 (16.7%) | 1 (7.7%) | 10 (12.5%) |
51-60 | 1 (4.8%) | 0 (0%) | 1 (50.0%) | 0 (0%) | 4 (21.1%) | 1 (20.0%) | 1 (16.7%) | 1 (8.3%) | 1 (7.7%) | 10 (12.5%) |
61-70 | 2 (9.5%) | 0 (0%) | 1 (50.0%) | 0 (0%) | 7 (36.8%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 10 (12.5%) |
Top 10 | 2 (9.5%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 (5.3%) | 1 (20.0%) | 1 (16.7%) | 5 (41.7%) | 0 (0%) | 10 (12.5%) |
>70 | 0 (0%) | 1 (100%) | 0 (0%) | 0 (0%) | 1 (5.3%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 2 (2.5%) |
Undetermined MIC | 0 (0%) | 0 (0%) | 0 (0%) | 1 (100%) | 4 (21.1%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 5 (6.3%) |
Missing | 2 (9.5%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 (8.3%) | 0 (0%) | 3 (3.8%) |
sub_inhibition_category | ||||||||||
>70 | 1 (4.8%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 (1.3%) |
11-20 | 5 (23.8%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 2 (40.0%) | 1 (16.7%) | 1 (8.3%) | 1 (7.7%) | 10 (12.5%) |
21-30 | 3 (14.3%) | 0 (0%) | 1 (50.0%) | 0 (0%) | 0 (0%) | 2 (40.0%) | 0 (0%) | 0 (0%) | 4 (30.8%) | 10 (12.5%) |
31-40 | 5 (23.8%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 (5.3%) | 0 (0%) | 0 (0%) | 1 (8.3%) | 2 (15.4%) | 9 (11.3%) |
41-50 | 3 (14.3%) | 0 (0%) | 1 (50.0%) | 0 (0%) | 1 (5.3%) | 0 (0%) | 3 (50.0%) | 1 (8.3%) | 0 (0%) | 9 (11.3%) |
Top 10 | 2 (9.5%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 (5.3%) | 0 (0%) | 0 (0%) | 5 (41.7%) | 2 (15.4%) | 10 (12.5%) |
Undetermined MIC | 0 (0%) | 1 (100%) | 0 (0%) | 1 (100%) | 13 (68.4%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 15 (18.8%) |
51-60 | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 (5.3%) | 1 (20.0%) | 2 (33.3%) | 1 (8.3%) | 3 (23.1%) | 8 (10.0%) |
61-70 | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 2 (10.5%) | 0 (0%) | 0 (0%) | 2 (16.7%) | 1 (7.7%) | 5 (6.3%) |
Missing | 2 (9.5%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 (8.3%) | 0 (0%) | 3 (3.8%) |
case_control | ||||||||||
Control | 12 (57.1%) | 0 (0%) | 2 (100%) | 1 (100%) | 10 (52.6%) | 2 (40.0%) | 3 (50.0%) | 6 (50.0%) | 6 (46.2%) | 42 (52.5%) |
Case | 9 (42.9%) | 1 (100%) | 0 (0%) | 0 (0%) | 9 (47.4%) | 3 (60.0%) | 3 (50.0%) | 6 (50.0%) | 7 (53.8%) | 38 (47.5%) |
aip_1 | ||||||||||
0 | 5 (23.8%) | 1 (100%) | 2 (100%) | 1 (100%) | 0 (0%) | 5 (100%) | 3 (50.0%) | 12 (100%) | 13 (100%) | 42 (52.5%) |
1 | 16 (76.2%) | 0 (0%) | 0 (0%) | 0 (0%) | 19 (100%) | 0 (0%) | 3 (50.0%) | 0 (0%) | 0 (0%) | 38 (47.5%) |
aip_2 | ||||||||||
0 | 16 (76.2%) | 0 (0%) | 2 (100%) | 1 (100%) | 19 (100%) | 0 (0%) | 6 (100%) | 0 (0%) | 6 (46.2%) | 50 (62.5%) |
1 | 5 (23.8%) | 1 (100%) | 0 (0%) | 0 (0%) | 0 (0%) | 5 (100%) | 0 (0%) | 12 (100%) | 7 (53.8%) | 30 (37.5%) |
aip_3 | ||||||||||
0 | 21 (100%) | 1 (100%) | 2 (100%) | 1 (100%) | 19 (100%) | 5 (100%) | 6 (100%) | 12 (100%) | 8 (61.5%) | 75 (93.8%) |
1 | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 5 (38.5%) | 5 (6.3%) |
aip_4 | ||||||||||
0 | 21 (100%) | 1 (100%) | 0 (0%) | 1 (100%) | 19 (100%) | 5 (100%) | 6 (100%) | 12 (100%) | 12 (92.3%) | 77 (96.3%) |
1 | 0 (0%) | 0 (0%) | 2 (100%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 (7.7%) | 3 (3.8%) |
sactipeptides | ||||||||||
Mean (SD) | 1.00 (0) | 1.00 (NA) | 1.00 (0) | 1.00 (NA) | 1.00 (0) | 1.00 (0) | 1.00 (0) | 1.00 (0) | 1.00 (0) | 1.00 (0) |
Median [Min, Max] | 1.00 [1.00, 1.00] | 1.00 [1.00, 1.00] | 1.00 [1.00, 1.00] | 1.00 [1.00, 1.00] | 1.00 [1.00, 1.00] | 1.00 [1.00, 1.00] | 1.00 [1.00, 1.00] | 1.00 [1.00, 1.00] | 1.00 [1.00, 1.00] | 1.00 [1.00, 1.00] |
subtilosin_a | ||||||||||
1 | 13 (61.9%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 13 (16.3%) |
0 | 8 (38.1%) | 1 (100%) | 2 (100%) | 1 (100%) | 19 (100%) | 5 (100%) | 6 (100%) | 12 (100%) | 13 (100%) | 67 (83.8%) |
putative_bacteriocin_193 | ||||||||||
0 | 21 (100%) | 1 (100%) | 2 (100%) | 1 (100%) | 19 (100%) | 5 (100%) | 2 (33.3%) | 12 (100%) | 13 (100%) | 76 (95.0%) |
1 | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 4 (66.7%) | 0 (0%) | 0 (0%) | 4 (5.0%) |
putative_bacteriocin_194 | ||||||||||
0 | 21 (100%) | 1 (100%) | 2 (100%) | 0 (0%) | 19 (100%) | 5 (100%) | 6 (100%) | 12 (100%) | 6 (46.2%) | 72 (90.0%) |
1 | 0 (0%) | 0 (0%) | 0 (0%) | 1 (100%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 7 (53.8%) | 8 (10.0%) |
# AIP1
table(metadata_bagel$wgs_species_2,metadata_bagel$aip_1)
##
## 0 1
## Other 4 0
## Staphylococcus chromogenes 5 16
## Staphylococcus haemolyticus 0 19
## Staphylococcus sciuri 3 3
## Staphylococcus succinus 12 0
## Staphylococcus xylosus/pseudoxylosus 18 0
fisher.test(table(metadata_bagel$wgs_species_2,metadata_bagel$aip_1))
##
## Fisher's Exact Test for Count Data
##
## data: table(metadata_bagel$wgs_species_2, metadata_bagel$aip_1)
## p-value = 1.063e-15
## alternative hypothesis: two.sided
# AIP2
table(metadata_bagel$wgs_species_2,metadata_bagel$aip_2)
##
## 0 1
## Other 3 1
## Staphylococcus chromogenes 16 5
## Staphylococcus haemolyticus 19 0
## Staphylococcus sciuri 6 0
## Staphylococcus succinus 0 12
## Staphylococcus xylosus/pseudoxylosus 6 12
fisher.test(table(metadata_bagel$wgs_species_2,metadata_bagel$aip_2))
##
## Fisher's Exact Test for Count Data
##
## data: table(metadata_bagel$wgs_species_2, metadata_bagel$aip_2)
## p-value = 2.758e-10
## alternative hypothesis: two.sided
# AIP3
table(metadata_bagel$wgs_species_2,metadata_bagel$aip_3)
##
## 0 1
## Other 4 0
## Staphylococcus chromogenes 21 0
## Staphylococcus haemolyticus 19 0
## Staphylococcus sciuri 6 0
## Staphylococcus succinus 12 0
## Staphylococcus xylosus/pseudoxylosus 13 5
fisher.test(table(metadata_bagel$wgs_species_2,metadata_bagel$aip_3))
##
## Fisher's Exact Test for Count Data
##
## data: table(metadata_bagel$wgs_species_2, metadata_bagel$aip_3)
## p-value = 0.007501
## alternative hypothesis: two.sided
# AIP4
table(metadata_bagel$wgs_species_2,metadata_bagel$aip_4)
##
## 0 1
## Other 2 2
## Staphylococcus chromogenes 21 0
## Staphylococcus haemolyticus 19 0
## Staphylococcus sciuri 6 0
## Staphylococcus succinus 12 0
## Staphylococcus xylosus/pseudoxylosus 17 1
fisher.test(table(metadata_bagel$wgs_species_2,metadata_bagel$aip_4))
##
## Fisher's Exact Test for Count Data
##
## data: table(metadata_bagel$wgs_species_2, metadata_bagel$aip_4)
## p-value = 0.003651
## alternative hypothesis: two.sided
# Subtilosin A
table(metadata_bagel$wgs_species_2,metadata_bagel$subtilosin_a)
##
## 1 0
## Other 0 4
## Staphylococcus chromogenes 13 8
## Staphylococcus haemolyticus 0 19
## Staphylococcus sciuri 0 6
## Staphylococcus succinus 0 12
## Staphylococcus xylosus/pseudoxylosus 0 18
fisher.test(table(metadata_bagel$wgs_species_2,metadata_bagel$subtilosin_a))
##
## Fisher's Exact Test for Count Data
##
## data: table(metadata_bagel$wgs_species_2, metadata_bagel$subtilosin_a)
## p-value = 4.126e-08
## alternative hypothesis: two.sided
# Putative bacteriocin 193
table(metadata_bagel$wgs_species_2,metadata_bagel$putative_bacteriocin_193)
##
## 0 1
## Other 4 0
## Staphylococcus chromogenes 21 0
## Staphylococcus haemolyticus 19 0
## Staphylococcus sciuri 2 4
## Staphylococcus succinus 12 0
## Staphylococcus xylosus/pseudoxylosus 18 0
fisher.test(table(metadata_bagel$wgs_species_2,metadata_bagel$putative_bacteriocin_193))
##
## Fisher's Exact Test for Count Data
##
## data: table(metadata_bagel$wgs_species_2, metadata_bagel$putative_bacteriocin_193)
## p-value = 1.012e-05
## alternative hypothesis: two.sided
# Putative bacteriocin 194
table(metadata_bagel$wgs_species_2,metadata_bagel$putative_bacteriocin_194)
##
## 0 1
## Other 3 1
## Staphylococcus chromogenes 21 0
## Staphylococcus haemolyticus 19 0
## Staphylococcus sciuri 6 0
## Staphylococcus succinus 12 0
## Staphylococcus xylosus/pseudoxylosus 11 7
fisher.test(table(metadata_bagel$wgs_species_2,metadata_bagel$putative_bacteriocin_194))
##
## Fisher's Exact Test for Count Data
##
## data: table(metadata_bagel$wgs_species_2, metadata_bagel$putative_bacteriocin_194)
## p-value = 0.0002158
## alternative hypothesis: two.sided
# --- Inhibitory activity SCH ----
# AIP1
table1(~aip_1|case_control,data=mb_chromogenes)
Control (N=12) |
Case (N=9) |
Overall (N=21) |
|
---|---|---|---|
aip_1 | |||
0 | 1 (8.3%) | 4 (44.4%) | 5 (23.8%) |
1 | 11 (91.7%) | 5 (55.6%) | 16 (76.2%) |
model_1 <- glm(aip_1 ~ case_control,family=binomial(link="logit"),data=mb_chromogenes)
summary(model_1)
##
## Call:
## glm(formula = aip_1 ~ case_control, family = binomial(link = "logit"),
## data = mb_chromogenes)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.398 1.044 2.296 0.0217 *
## case_controlCase -2.175 1.241 -1.752 0.0798 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 23.053 on 20 degrees of freedom
## Residual deviance: 19.249 on 19 degrees of freedom
## AIC: 23.249
##
## Number of Fisher Scoring iterations: 5
exp(Confint(model_1))
## Estimate 2.5 % 97.5 %
## (Intercept) 11.0000000 2.140159987 201.083018
## case_controlCase 0.1136364 0.005045515 1.010237
effectsize::oddsratio_to_riskratio(model_1)
## Warning: 'p0' not provided.
## RR is relative to the intercept (p0 = 0.92) - make sure your intercept
## is meaningful.
## CIs are back-transformed from the logit scale.
## Parameter | Risk Ratio | 95% CI
## -----------------------------------------------
## (Intercept) | 0.92 |
## case control [Case] | 0.61 | [0.06, 1.00]
##
## Uncertainty intervals (profile-likelihood) and p-values (two-tailed)
## computed using a Wald z-distribution approximation.
emmeans(model_1,~case_control,type="response")
## case_control prob SE df asymp.LCL asymp.UCL
## Control 0.917 0.0798 Inf 0.587 0.988
## Case 0.556 0.1656 Inf 0.251 0.823
##
## Confidence level used: 0.95
## Intervals are back-transformed from the logit scale
# AIP2
table1(~aip_2|case_control,data=mb_chromogenes)
Control (N=12) |
Case (N=9) |
Overall (N=21) |
|
---|---|---|---|
aip_2 | |||
0 | 11 (91.7%) | 5 (55.6%) | 16 (76.2%) |
1 | 1 (8.3%) | 4 (44.4%) | 5 (23.8%) |
model_2 <- glm(aip_2 ~ case_control,family=binomial(link="logit"),data=mb_chromogenes)
summary(model_2)
##
## Call:
## glm(formula = aip_2 ~ case_control, family = binomial(link = "logit"),
## data = mb_chromogenes)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.398 1.044 -2.296 0.0217 *
## case_controlCase 2.175 1.241 1.752 0.0798 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 23.053 on 20 degrees of freedom
## Residual deviance: 19.249 on 19 degrees of freedom
## AIC: 23.249
##
## Number of Fisher Scoring iterations: 5
exp(Confint(model_2))
## Estimate 2.5 % 97.5 %
## (Intercept) 0.09090909 0.00497307 0.4672548
## case_controlCase 8.80000000 0.98986680 198.1958191
effectsize::oddsratio_to_riskratio(model_2)
## Warning: 'p0' not provided.
## RR is relative to the intercept (p0 = 0.08) - make sure your intercept
## is meaningful.
## CIs are back-transformed from the logit scale.
## Parameter | Risk Ratio | 95% CI
## ------------------------------------------------
## (Intercept) | 0.08 |
## case control [Case] | 5.33 | [0.99, 11.37]
##
## Uncertainty intervals (profile-likelihood) and p-values (two-tailed)
## computed using a Wald z-distribution approximation.
emmeans(model_2,~case_control,type="response")
## case_control prob SE df asymp.LCL asymp.UCL
## Control 0.0833 0.0798 Inf 0.0116 0.413
## Case 0.4444 0.1656 Inf 0.1768 0.749
##
## Confidence level used: 0.95
## Intervals are back-transformed from the logit scale
# Subtilosin A
table1(~subtilosin_a|case_control,data=mb_chromogenes)
Control (N=12) |
Case (N=9) |
Overall (N=21) |
|
---|---|---|---|
subtilosin_a | |||
1 | 7 (58.3%) | 6 (66.7%) | 13 (61.9%) |
0 | 5 (41.7%) | 3 (33.3%) | 8 (38.1%) |
model_3 <- glm(subtilosin_a ~ case_control,family=binomial(link="logit"),data=mb_chromogenes)
summary(model_3)
##
## Call:
## glm(formula = subtilosin_a ~ case_control, family = binomial(link = "logit"),
## data = mb_chromogenes)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.3365 0.5855 -0.575 0.566
## case_controlCase -0.3567 0.9181 -0.389 0.698
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 27.910 on 20 degrees of freedom
## Residual deviance: 27.758 on 19 degrees of freedom
## AIC: 31.758
##
## Number of Fisher Scoring iterations: 4
exp(Confint(model_3))
## Estimate 2.5 % 97.5 %
## (Intercept) 0.7142857 0.2113989 2.237832
## case_controlCase 0.7000000 0.1053801 4.183982
effectsize::oddsratio_to_riskratio(model_3)
## Warning: 'p0' not provided.
## RR is relative to the intercept (p0 = 0.42) - make sure your intercept
## is meaningful.
## CIs are back-transformed from the logit scale.
## Parameter | Risk Ratio | 95% CI
## -----------------------------------------------
## (Intercept) | 0.42 |
## case control [Case] | 0.80 | [0.17, 1.80]
##
## Uncertainty intervals (profile-likelihood) and p-values (two-tailed)
## computed using a Wald z-distribution approximation.
emmeans(model_3,~case_control,type="response")
## case_control prob SE df asymp.LCL asymp.UCL
## Control 0.417 0.142 Inf 0.185 0.692
## Case 0.333 0.157 Inf 0.111 0.667
##
## Confidence level used: 0.95
## Intervals are back-transformed from the logit scale
# Association between AMPs and MIC in SCH
# AIP1
model_1 <- lm(mic_sau ~ aip_1,data=mb_chromogenes)
summary(model_1)
##
## Call:
## lm(formula = mic_sau ~ aip_1, data = mb_chromogenes)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.7647 -0.3097 -0.0300 0.2353 1.1553
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.1900 0.2533 12.594 4.79e-10 ***
## aip_11 0.1647 0.2851 0.578 0.571
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5066 on 17 degrees of freedom
## (2 observations deleted due to missingness)
## Multiple R-squared: 0.01925, Adjusted R-squared: -0.03844
## F-statistic: 0.3337 on 1 and 17 DF, p-value: 0.5711
model_1 <- lm(mic_sub ~ aip_1,data=mb_chromogenes)
summary(model_1)
##
## Call:
## lm(formula = mic_sub ~ aip_1, data = mb_chromogenes)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.578 -0.383 -0.088 0.206 2.092
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.9400 0.3093 9.507 3.23e-08 ***
## aip_11 0.1480 0.3481 0.425 0.676
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6185 on 17 degrees of freedom
## (2 observations deleted due to missingness)
## Multiple R-squared: 0.01052, Adjusted R-squared: -0.04768
## F-statistic: 0.1808 on 1 and 17 DF, p-value: 0.676
# AIP2
model_2 <- lm(mic_sau ~ aip_2,data=mb_chromogenes)
summary(model_2)
##
## Call:
## lm(formula = mic_sau ~ aip_2, data = mb_chromogenes)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.7647 -0.3097 -0.0300 0.2353 1.1553
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.3547 0.1308 25.647 4.97e-15 ***
## aip_21 -0.1647 0.2851 -0.578 0.571
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5066 on 17 degrees of freedom
## (2 observations deleted due to missingness)
## Multiple R-squared: 0.01925, Adjusted R-squared: -0.03844
## F-statistic: 0.3337 on 1 and 17 DF, p-value: 0.5711
model_2 <- lm(mic_sub ~ aip_2,data=mb_chromogenes)
summary(model_2)
##
## Call:
## lm(formula = mic_sub ~ aip_2, data = mb_chromogenes)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.578 -0.383 -0.088 0.206 2.092
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.0880 0.1597 19.336 5.19e-13 ***
## aip_21 -0.1480 0.3481 -0.425 0.676
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6185 on 17 degrees of freedom
## (2 observations deleted due to missingness)
## Multiple R-squared: 0.01052, Adjusted R-squared: -0.04768
## F-statistic: 0.1808 on 1 and 17 DF, p-value: 0.676
# Subtilosin A
model_3 <- lm(mic_sau ~ subtilosin_a,data=mb_chromogenes)
summary(model_3)
##
## Call:
## lm(formula = mic_sau ~ subtilosin_a, data = mb_chromogenes)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.84273 -0.33886 0.07727 0.20614 1.07727
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.4327 0.1484 23.137 2.73e-14 ***
## subtilosin_a0 -0.2677 0.2286 -1.171 0.258
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4921 on 17 degrees of freedom
## (2 observations deleted due to missingness)
## Multiple R-squared: 0.07463, Adjusted R-squared: 0.0202
## F-statistic: 1.371 on 1 and 17 DF, p-value: 0.2578
model_3 <- lm(mic_sub ~ subtilosin_a,data=mb_chromogenes)
summary(model_3)
##
## Call:
## lm(formula = mic_sub ~ subtilosin_a, data = mb_chromogenes)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.55909 -0.41455 -0.06909 0.18545 2.11091
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.06909 0.18742 16.375 7.64e-12 ***
## subtilosin_a0 -0.02909 0.28884 -0.101 0.921
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6216 on 17 degrees of freedom
## (2 observations deleted due to missingness)
## Multiple R-squared: 0.0005964, Adjusted R-squared: -0.05819
## F-statistic: 0.01014 on 1 and 17 DF, p-value: 0.921
# Clades within this group
# List of target isolates
target_isolates <- c("SCH1", "SCH3", "SCH5", "SCH8", "SCH15", "SCH16", "SCH17", "SCH18", "SCH20")
# Create a new column 'presence' based on target isolates
mb_chromogenes <- mb_chromogenes %>%
mutate(clade = ifelse(wgs_isolate_id %in% target_isolates, "Present", "Absent"))
# List of target isolates
target_isolates_2 <- c("SCH2", "SCH11", "SCH21", "SCH9")
# Create a new column 'presence' based on target isolates
mb_chromogenes <- mb_chromogenes %>%
mutate(clade_2 = ifelse(wgs_isolate_id %in% target_isolates_2, "Present", "Absent"))
table1(~mic_sau + mic_sub+sau_inhibition_category+sub_inhibition_category+subtilosin_a|clade,data=subset(mb_chromogenes,mb_chromogenes$wgs_species_3!="SAU"))
Absent (N=12) |
Present (N=9) |
Overall (N=21) |
|
---|---|---|---|
mic_sau | |||
Mean (SD) | 3.30 (0.409) | 3.35 (0.629) | 3.32 (0.497) |
Median [Min, Max] | 3.25 [2.74, 4.18] | 3.37 [2.59, 4.51] | 3.25 [2.59, 4.51] |
Missing | 1 (8.3%) | 1 (11.1%) | 2 (9.5%) |
mic_sub | |||
Mean (SD) | 3.21 (0.712) | 2.85 (0.362) | 3.06 (0.604) |
Median [Min, Max] | 3.16 [2.61, 5.18] | 2.71 [2.51, 3.51] | 3.00 [2.51, 5.18] |
Missing | 1 (8.3%) | 1 (11.1%) | 2 (9.5%) |
sau_inhibition_category | |||
11 to 20 | 2 (16.7%) | 0 (0%) | 2 (9.5%) |
21 to 30 | 1 (8.3%) | 1 (11.1%) | 2 (9.5%) |
31 to 40 | 5 (41.7%) | 1 (11.1%) | 6 (28.6%) |
41 to 50 | 2 (16.7%) | 2 (22.2%) | 4 (19.0%) |
61 to 70 | 1 (8.3%) | 1 (11.1%) | 2 (9.5%) |
51 to 60 | 0 (0%) | 1 (11.1%) | 1 (4.8%) |
Top 10 | 0 (0%) | 2 (22.2%) | 2 (9.5%) |
Missing | 1 (8.3%) | 1 (11.1%) | 2 (9.5%) |
sub_inhibition_category | |||
>70 | 1 (8.3%) | 0 (0%) | 1 (4.8%) |
11 to 20 | 3 (25.0%) | 2 (22.2%) | 5 (23.8%) |
21 to 30 | 1 (8.3%) | 2 (22.2%) | 3 (14.3%) |
31 to 40 | 4 (33.3%) | 1 (11.1%) | 5 (23.8%) |
41 to 50 | 2 (16.7%) | 1 (11.1%) | 3 (14.3%) |
Top 10 | 0 (0%) | 2 (22.2%) | 2 (9.5%) |
Missing | 1 (8.3%) | 1 (11.1%) | 2 (9.5%) |
subtilosin_a | |||
1 | 4 (33.3%) | 9 (100%) | 13 (61.9%) |
0 | 8 (66.7%) | 0 (0%) | 8 (38.1%) |
# Isolates inside and outside clade
model <- lm(mic_sau~clade,data=mb_chromogenes)
summary(model)
##
## Call:
## lm(formula = mic_sau ~ clade, data = mb_chromogenes)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.76125 -0.27926 -0.04727 0.26074 1.15875
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.29727 0.15400 21.411 9.8e-14 ***
## cladePresent 0.05398 0.23733 0.227 0.823
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5108 on 17 degrees of freedom
## (2 observations deleted due to missingness)
## Multiple R-squared: 0.003034, Adjusted R-squared: -0.05561
## F-statistic: 0.05173 on 1 and 17 DF, p-value: 0.8228
Confint(model)
## Estimate 2.5 % 97.5 %
## (Intercept) 3.29727273 2.9723606 3.6221848
## cladePresent 0.05397727 -0.4467459 0.5547004
emmeans(model,~clade)
## clade emmean SE df lower.CL upper.CL
## Absent 3.30 0.154 17 2.97 3.62
## Present 3.35 0.181 17 2.97 3.73
##
## Confidence level used: 0.95
model <- lm(mic_sub~clade,data=mb_chromogenes)
summary(model)
##
## Call:
## lm(formula = mic_sub ~ clade, data = mb_chromogenes)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.5964 -0.3162 -0.1013 0.1112 1.9736
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.2064 0.1790 17.917 1.79e-12 ***
## cladePresent -0.3551 0.2758 -1.288 0.215
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5935 on 17 degrees of freedom
## (2 observations deleted due to missingness)
## Multiple R-squared: 0.08886, Adjusted R-squared: 0.03527
## F-statistic: 1.658 on 1 and 17 DF, p-value: 0.2151
Confint(model)
## Estimate 2.5 % 97.5 %
## (Intercept) 3.2063636 2.8288051 3.5839221
## cladePresent -0.3551136 -0.9369704 0.2267431
emmeans(model,~clade)
## clade emmean SE df lower.CL upper.CL
## Absent 3.21 0.179 17 2.83 3.58
## Present 2.85 0.210 17 2.41 3.29
##
## Confidence level used: 0.95
# AIP1
table1(~aip_1|clade,data=mb_chromogenes)
Absent (N=12) |
Present (N=9) |
Overall (N=21) |
|
---|---|---|---|
aip_1 | |||
0 | 5 (41.7%) | 0 (0%) | 5 (23.8%) |
1 | 7 (58.3%) | 9 (100%) | 16 (76.2%) |
fisher.test(table(mb_chromogenes$aip_1,mb_chromogenes$clade))
##
## Fisher's Exact Test for Count Data
##
## data: table(mb_chromogenes$aip_1, mb_chromogenes$clade)
## p-value = 0.04511
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.8206881 Inf
## sample estimates:
## odds ratio
## Inf
# AIP2
table1(~aip_2|clade,data=mb_chromogenes)
Absent (N=12) |
Present (N=9) |
Overall (N=21) |
|
---|---|---|---|
aip_2 | |||
0 | 7 (58.3%) | 9 (100%) | 16 (76.2%) |
1 | 5 (41.7%) | 0 (0%) | 5 (23.8%) |
fisher.test(table(mb_chromogenes$aip_2,mb_chromogenes$clade))
##
## Fisher's Exact Test for Count Data
##
## data: table(mb_chromogenes$aip_2, mb_chromogenes$clade)
## p-value = 0.04511
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.00000 1.21849
## sample estimates:
## odds ratio
## 0
# Subtilosin A
table1(~subtilosin_a|clade,data=mb_chromogenes)
Absent (N=12) |
Present (N=9) |
Overall (N=21) |
|
---|---|---|---|
subtilosin_a | |||
1 | 4 (33.3%) | 9 (100%) | 13 (61.9%) |
0 | 8 (66.7%) | 0 (0%) | 8 (38.1%) |
fisher.test(table(mb_chromogenes$subtilosin_a,mb_chromogenes$clade))
##
## Fisher's Exact Test for Count Data
##
## data: table(mb_chromogenes$subtilosin_a, mb_chromogenes$clade)
## p-value = 0.0046
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.0000000 0.4517167
## sample estimates:
## odds ratio
## 0
# Isolates inside and outside clade 2
model <- lm(mic_sau~clade_2,data=mb_chromogenes)
summary(model)
##
## Call:
## lm(formula = mic_sau ~ clade_2, data = mb_chromogenes)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.75813 -0.30313 -0.06813 0.24188 1.16187
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.3481 0.1267 26.420 3.03e-15 ***
## clade_2Present -0.1781 0.3189 -0.559 0.584
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5069 on 17 degrees of freedom
## (2 observations deleted due to missingness)
## Multiple R-squared: 0.01802, Adjusted R-squared: -0.03974
## F-statistic: 0.3119 on 1 and 17 DF, p-value: 0.5838
Confint(model)
## Estimate 2.5 % 97.5 %
## (Intercept) 3.348125 3.0807545 3.6154955
## clade_2Present -0.178125 -0.8509926 0.4947426
emmeans(model,~clade_2)
## clade_2 emmean SE df lower.CL upper.CL
## Absent 3.35 0.127 17 3.08 3.62
## Present 3.17 0.293 17 2.55 3.79
##
## Confidence level used: 0.95
model <- lm(mic_sub~clade_2,data=mb_chromogenes)
summary(model)
##
## Call:
## lm(formula = mic_sub ~ clade_2, data = mb_chromogenes)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.58813 -0.39312 -0.09667 0.16687 2.08187
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.0981 0.1534 20.197 2.55e-13 ***
## clade_2Present -0.2615 0.3860 -0.677 0.507
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6136 on 17 degrees of freedom
## (2 observations deleted due to missingness)
## Multiple R-squared: 0.02628, Adjusted R-squared: -0.031
## F-statistic: 0.4587 on 1 and 17 DF, p-value: 0.5073
Confint(model)
## Estimate 2.5 % 97.5 %
## (Intercept) 3.0981250 2.774496 3.4217537
## clade_2Present -0.2614583 -1.075906 0.5529893
emmeans(model,~clade_2)
## clade_2 emmean SE df lower.CL upper.CL
## Absent 3.10 0.153 17 2.77 3.42
## Present 2.84 0.354 17 2.09 3.58
##
## Confidence level used: 0.95
# AIP1
table1(~aip_1|clade_2,data=mb_chromogenes)
Absent (N=17) |
Present (N=4) |
Overall (N=21) |
|
---|---|---|---|
aip_1 | |||
0 | 1 (5.9%) | 4 (100%) | 5 (23.8%) |
1 | 16 (94.1%) | 0 (0%) | 16 (76.2%) |
fisher.test(table(mb_chromogenes$aip_1,mb_chromogenes$clade_2))
##
## Fisher's Exact Test for Count Data
##
## data: table(mb_chromogenes$aip_1, mb_chromogenes$clade_2)
## p-value = 0.0008354
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.0000000 0.2697048
## sample estimates:
## odds ratio
## 0
# AIP2
table1(~aip_2|clade_2,data=mb_chromogenes)
Absent (N=17) |
Present (N=4) |
Overall (N=21) |
|
---|---|---|---|
aip_2 | |||
0 | 16 (94.1%) | 0 (0%) | 16 (76.2%) |
1 | 1 (5.9%) | 4 (100%) | 5 (23.8%) |
fisher.test(table(mb_chromogenes$aip_2,mb_chromogenes$clade_2))
##
## Fisher's Exact Test for Count Data
##
## data: table(mb_chromogenes$aip_2, mb_chromogenes$clade_2)
## p-value = 0.0008354
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 3.707758 Inf
## sample estimates:
## odds ratio
## Inf
# Subtilosin A
table1(~subtilosin_a|clade_2,data=mb_chromogenes)
Absent (N=17) |
Present (N=4) |
Overall (N=21) |
|
---|---|---|---|
subtilosin_a | |||
1 | 10 (58.8%) | 3 (75.0%) | 13 (61.9%) |
0 | 7 (41.2%) | 1 (25.0%) | 8 (38.1%) |
fisher.test(table(mb_chromogenes$subtilosin_a,mb_chromogenes$clade_2))
##
## Fisher's Exact Test for Count Data
##
## data: table(mb_chromogenes$subtilosin_a, mb_chromogenes$clade_2)
## p-value = 1
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.007958673 7.734743347
## sample estimates:
## odds ratio
## 0.4921903
# --- AMPs in SHAEM----
# none of the AMPs were both present and absent in at least 2 isolates
# Inhibitory activity was absent in most isolates
# ---- AMPs in SSC ----
# AIP1
table1(~aip_1|case_control,data=mb_sciuri)
Control (N=3) |
Case (N=3) |
Overall (N=6) |
|
---|---|---|---|
aip_1 | |||
0 | 1 (33.3%) | 2 (66.7%) | 3 (50.0%) |
1 | 2 (66.7%) | 1 (33.3%) | 3 (50.0%) |
model_1 <- glm(aip_1 ~ case_control,family=binomial(link="logit"),data=mb_sciuri)
summary(model_1)
##
## Call:
## glm(formula = aip_1 ~ case_control, family = binomial(link = "logit"),
## data = mb_sciuri)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.6931 1.2247 0.566 0.571
## case_controlCase -1.3863 1.7321 -0.800 0.423
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 8.3178 on 5 degrees of freedom
## Residual deviance: 7.6382 on 4 degrees of freedom
## AIC: 11.638
##
## Number of Fisher Scoring iterations: 4
exp(Confint(model_1))
## Estimate 2.5 % 97.5 %
## (Intercept) 2.00 0.191564939 43.037669
## case_controlCase 0.25 0.004803826 6.562236
effectsize::oddsratio_to_riskratio(model_1)
## Warning: 'p0' not provided.
## RR is relative to the intercept (p0 = 0.67) - make sure your intercept
## is meaningful.
## CIs are back-transformed from the logit scale.
## Parameter | Risk Ratio | 95% CI
## -----------------------------------------------
## (Intercept) | 0.67 |
## case control [Case] | 0.50 | [0.01, 1.39]
##
## Uncertainty intervals (profile-likelihood) and p-values (two-tailed)
## computed using a Wald z-distribution approximation.
emmeans(model_1,~case_control,type="response")
## case_control prob SE df asymp.LCL asymp.UCL
## Control 0.667 0.272 Inf 0.1535 0.957
## Case 0.333 0.272 Inf 0.0434 0.846
##
## Confidence level used: 0.95
## Intervals are back-transformed from the logit scale
# Putative bacteriocin 193
table1(~putative_bacteriocin_193|case_control,data=mb_sciuri)
Control (N=3) |
Case (N=3) |
Overall (N=6) |
|
---|---|---|---|
putative_bacteriocin_193 | |||
0 | 1 (33.3%) | 1 (33.3%) | 2 (33.3%) |
1 | 2 (66.7%) | 2 (66.7%) | 4 (66.7%) |
model_2 <- glm(putative_bacteriocin_193 ~ case_control,family=binomial(link="logit"),data=mb_sciuri)
summary(model_2)
##
## Call:
## glm(formula = putative_bacteriocin_193 ~ case_control, family = binomial(link = "logit"),
## data = mb_sciuri)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 6.931e-01 1.225e+00 0.566 0.571
## case_controlCase 1.923e-16 1.732e+00 0.000 1.000
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 7.6382 on 5 degrees of freedom
## Residual deviance: 7.6382 on 4 degrees of freedom
## AIC: 11.638
##
## Number of Fisher Scoring iterations: 4
exp(Confint(model_2))
## Estimate 2.5 % 97.5 %
## (Intercept) 2 0.19156494 43.03767
## case_controlCase 1 0.02475536 40.39530
effectsize::oddsratio_to_riskratio(model_2)
## Warning: 'p0' not provided.
## RR is relative to the intercept (p0 = 0.67) - make sure your intercept
## is meaningful.
## CIs are back-transformed from the logit scale.
## Parameter | Risk Ratio | 95% CI
## -----------------------------------------------
## (Intercept) | 0.67 |
## case control [Case] | 1.00 | [0.07, 1.48]
##
## Uncertainty intervals (profile-likelihood) and p-values (two-tailed)
## computed using a Wald z-distribution approximation.
emmeans(model_2,~case_control,type="response")
## case_control prob SE df asymp.LCL asymp.UCL
## Control 0.667 0.272 Inf 0.154 0.957
## Case 0.667 0.272 Inf 0.154 0.957
##
## Confidence level used: 0.95
## Intervals are back-transformed from the logit scale
# Association between AMPs and MIC in SSCI
# AIP1
model_1 <- lm(mic_sau ~ aip_1,data=mb_sciuri)
summary(model_1)
##
## Call:
## lm(formula = mic_sau ~ aip_1, data = mb_sciuri)
##
## Residuals:
## 1 2 3 4 5 6
## -0.09 0.10 0.92 -0.41 -0.01 -0.51
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.5400 0.3282 10.785 0.000419 ***
## aip_11 -0.4300 0.4642 -0.926 0.406692
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5685 on 4 degrees of freedom
## Multiple R-squared: 0.1766, Adjusted R-squared: -0.0292
## F-statistic: 0.8581 on 1 and 4 DF, p-value: 0.4067
model_1 <- lm(mic_sub ~ aip_1,data=mb_sciuri)
summary(model_1)
##
## Call:
## lm(formula = mic_sub ~ aip_1, data = mb_sciuri)
##
## Residuals:
## 1 2 3 4 5 6
## -0.0900 0.1000 0.5867 0.2567 -0.0100 -0.8433
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.54000 0.30815 11.488 0.000328 ***
## aip_11 -0.09667 0.43579 -0.222 0.835318
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5337 on 4 degrees of freedom
## Multiple R-squared: 0.01215, Adjusted R-squared: -0.2348
## F-statistic: 0.0492 on 1 and 4 DF, p-value: 0.8353
# putative bacteriocin 193
model_2 <- lm(mic_sau ~ putative_bacteriocin_193,data=mb_sciuri)
summary(model_2)
##
## Call:
## lm(formula = mic_sau ~ putative_bacteriocin_193, data = mb_sciuri)
##
## Residuals:
## 1 2 3 4 5 6
## 0.145 0.335 0.665 -0.665 0.225 -0.705
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.3650 0.4423 7.607 0.0016 **
## putative_bacteriocin_1931 -0.0600 0.5418 -0.111 0.9171
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6256 on 4 degrees of freedom
## Multiple R-squared: 0.003057, Adjusted R-squared: -0.2462
## F-statistic: 0.01227 on 1 and 4 DF, p-value: 0.9171
model_2 <- lm(mic_sub ~ putative_bacteriocin_193,data=mb_sciuri)
summary(model_2)
##
## Call:
## lm(formula = mic_sub ~ putative_bacteriocin_193, data = mb_sciuri)
##
## Residuals:
## 1 2 3 4 5 6
## 0.145 0.335 0.165 -0.165 0.225 -0.705
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.8650 0.3032 12.748 0.000218 ***
## putative_bacteriocin_1931 -0.5600 0.3713 -1.508 0.206010
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4288 on 4 degrees of freedom
## Multiple R-squared: 0.3625, Adjusted R-squared: 0.2031
## F-statistic: 2.274 on 1 and 4 DF, p-value: 0.206
# clades
# List of target isolates
target_isolates <- c("SSCI1", "SSCI2", "SSCI5", "SSCI6")
# Create a new column 'presence' based on target isolates
mb_sciuri <- mb_sciuri %>%
mutate(clade = ifelse(wgs_isolate_id %in% target_isolates, "Present", "Absent"))
table1(~mic_sau + mic_sub+sau_inhibition_category+sub_inhibition_category+case_control+aip_1+aip_2+aip_3+aip_4+sactipeptides+subtilosin_a+putative_bacteriocin_193+putative_bacteriocin_194|clade,data=mb_sciuri)
Absent (N=2) |
Present (N=4) |
Overall (N=6) |
|
---|---|---|---|
mic_sau | |||
Mean (SD) | 3.37 (0.940) | 3.31 (0.476) | 3.33 (0.560) |
Median [Min, Max] | 3.37 [2.70, 4.03] | 3.49 [2.60, 3.64] | 3.49 [2.60, 4.03] |
mic_sub | |||
Mean (SD) | 3.87 (0.233) | 3.31 (0.476) | 3.49 (0.480) |
Median [Min, Max] | 3.87 [3.70, 4.03] | 3.49 [2.60, 3.64] | 3.59 [2.60, 4.03] |
sau_inhibition_category | |||
11 to 20 | 1 (50.0%) | 0 (0%) | 1 (16.7%) |
51 to 60 | 1 (50.0%) | 0 (0%) | 1 (16.7%) |
31 to 40 | 0 (0%) | 1 (25.0%) | 1 (16.7%) |
41 to 50 | 0 (0%) | 2 (50.0%) | 2 (33.3%) |
Top 10 | 0 (0%) | 1 (25.0%) | 1 (16.7%) |
sub_inhibition_category | |||
51 to 60 | 2 (100%) | 0 (0%) | 2 (33.3%) |
11 to 20 | 0 (0%) | 1 (25.0%) | 1 (16.7%) |
41 to 50 | 0 (0%) | 3 (75.0%) | 3 (50.0%) |
case_control | |||
Control | 1 (50.0%) | 2 (50.0%) | 3 (50.0%) |
Case | 1 (50.0%) | 2 (50.0%) | 3 (50.0%) |
aip_1 | |||
0 | 0 (0%) | 3 (75.0%) | 3 (50.0%) |
1 | 2 (100%) | 1 (25.0%) | 3 (50.0%) |
aip_2 | |||
0 | 2 (100%) | 4 (100%) | 6 (100%) |
1 | 0 (0%) | 0 (0%) | 0 (0%) |
aip_3 | |||
0 | 2 (100%) | 4 (100%) | 6 (100%) |
1 | 0 (0%) | 0 (0%) | 0 (0%) |
aip_4 | |||
0 | 2 (100%) | 4 (100%) | 6 (100%) |
1 | 0 (0%) | 0 (0%) | 0 (0%) |
sactipeptides | |||
Mean (SD) | 1.00 (0) | 1.00 (0) | 1.00 (0) |
Median [Min, Max] | 1.00 [1.00, 1.00] | 1.00 [1.00, 1.00] | 1.00 [1.00, 1.00] |
subtilosin_a | |||
1 | 0 (0%) | 0 (0%) | 0 (0%) |
0 | 2 (100%) | 4 (100%) | 6 (100%) |
putative_bacteriocin_193 | |||
0 | 2 (100%) | 0 (0%) | 2 (33.3%) |
1 | 0 (0%) | 4 (100%) | 4 (66.7%) |
putative_bacteriocin_194 | |||
0 | 2 (100%) | 4 (100%) | 6 (100%) |
1 | 0 (0%) | 0 (0%) | 0 (0%) |
# MIC across different clades
model <- lm(mic_sau~clade,data=mb_sciuri)
summary(model)
##
## Call:
## lm(formula = mic_sau ~ clade, data = mb_sciuri)
##
## Residuals:
## 1 2 3 4 5 6
## 0.145 0.335 0.665 -0.665 0.225 -0.705
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.3650 0.4423 7.607 0.0016 **
## cladePresent -0.0600 0.5418 -0.111 0.9171
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6256 on 4 degrees of freedom
## Multiple R-squared: 0.003057, Adjusted R-squared: -0.2462
## F-statistic: 0.01227 on 1 and 4 DF, p-value: 0.9171
Confint(model)
## Estimate 2.5 % 97.5 %
## (Intercept) 3.365 2.136854 4.593146
## cladePresent -0.060 -1.564165 1.444165
emmeans(model,~clade)
## clade emmean SE df lower.CL upper.CL
## Absent 3.37 0.442 4 2.14 4.59
## Present 3.31 0.313 4 2.44 4.17
##
## Confidence level used: 0.95
model <- lm(mic_sub~clade,data=mb_sciuri)
summary(model)
##
## Call:
## lm(formula = mic_sub ~ clade, data = mb_sciuri)
##
## Residuals:
## 1 2 3 4 5 6
## 0.145 0.335 0.165 -0.165 0.225 -0.705
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.8650 0.3032 12.748 0.000218 ***
## cladePresent -0.5600 0.3713 -1.508 0.206010
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4288 on 4 degrees of freedom
## Multiple R-squared: 0.3625, Adjusted R-squared: 0.2031
## F-statistic: 2.274 on 1 and 4 DF, p-value: 0.206
Confint(model)
## Estimate 2.5 % 97.5 %
## (Intercept) 3.865 3.023234 4.706766
## cladePresent -0.560 -1.590948 0.470948
emmeans(model,~clade)
## clade emmean SE df lower.CL upper.CL
## Absent 3.87 0.303 4 3.02 4.71
## Present 3.31 0.214 4 2.71 3.90
##
## Confidence level used: 0.95
# AIP1
table1(~aip_1|clade,data=mb_sciuri)
Absent (N=2) |
Present (N=4) |
Overall (N=6) |
|
---|---|---|---|
aip_1 | |||
0 | 0 (0%) | 3 (75.0%) | 3 (50.0%) |
1 | 2 (100%) | 1 (25.0%) | 3 (50.0%) |
fisher.test(table(mb_sciuri$aip_1,mb_sciuri$clade))
##
## Fisher's Exact Test for Count Data
##
## data: table(mb_sciuri$aip_1, mb_sciuri$clade)
## p-value = 0.4
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.000000 4.922984
## sample estimates:
## odds ratio
## 0
# putative bacteriocin 193
table1(~putative_bacteriocin_193|clade,data=mb_sciuri)
Absent (N=2) |
Present (N=4) |
Overall (N=6) |
|
---|---|---|---|
putative_bacteriocin_193 | |||
0 | 2 (100%) | 0 (0%) | 2 (33.3%) |
1 | 0 (0%) | 4 (100%) | 4 (66.7%) |
fisher.test(table(mb_sciuri$putative_bacteriocin_193,mb_sciuri$clade))
##
## Fisher's Exact Test for Count Data
##
## data: table(mb_sciuri$putative_bacteriocin_193, mb_sciuri$clade)
## p-value = 0.06667
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.5079839 Inf
## sample estimates:
## odds ratio
## Inf
# ---- AMPs in SSUC ----
# none of the AMPs were both present and absent in at least 2 isolates
# Clades
# List of target isolates
target_isolates <- c("SSUC1", "SSUC2", "SSUC3", "SSUC4", "SSUC5", "SSUC10", "SSUC12")
# Create a new column 'presence' based on target isolates
mb_succinus <- mb_succinus %>%
mutate(clade = ifelse(wgs_isolate_id %in% target_isolates, "Present", "Absent"))
table1(~mic_sau + mic_sub+sau_inhibition_category+sub_inhibition_category+subtilosin_a|clade,data=subset(mb_succinus,mb_succinus$wgs_species_3!="SAU"))
Absent (N=5) |
Present (N=7) |
Overall (N=12) |
|
---|---|---|---|
mic_sau | |||
Mean (SD) | 3.50 (0.443) | 2.44 (0.430) | 2.92 (0.692) |
Median [Min, Max] | 3.58 [3.03, 4.11] | 2.40 [1.92, 3.14] | 3.03 [1.92, 4.11] |
Missing | 0 (0%) | 1 (14.3%) | 1 (8.3%) |
mic_sub | |||
Mean (SD) | 3.50 (0.649) | 2.44 (0.884) | 2.92 (0.931) |
Median [Min, Max] | 3.68 [2.58, 4.11] | 2.21 [1.65, 4.14] | 2.58 [1.65, 4.14] |
Missing | 0 (0%) | 1 (14.3%) | 1 (8.3%) |
sau_inhibition_category | |||
21 to 30 | 2 (40.0%) | 1 (14.3%) | 3 (25.0%) |
41 to 50 | 2 (40.0%) | 0 (0%) | 2 (16.7%) |
51 to 60 | 1 (20.0%) | 0 (0%) | 1 (8.3%) |
Top 10 | 0 (0%) | 5 (71.4%) | 5 (41.7%) |
Missing | 0 (0%) | 1 (14.3%) | 1 (8.3%) |
sub_inhibition_category | |||
11 to 20 | 1 (20.0%) | 0 (0%) | 1 (8.3%) |
31 to 40 | 1 (20.0%) | 0 (0%) | 1 (8.3%) |
41 to 50 | 1 (20.0%) | 0 (0%) | 1 (8.3%) |
51 to 60 | 1 (20.0%) | 0 (0%) | 1 (8.3%) |
61 to 70 | 1 (20.0%) | 1 (14.3%) | 2 (16.7%) |
Top 10 | 0 (0%) | 5 (71.4%) | 5 (41.7%) |
Missing | 0 (0%) | 1 (14.3%) | 1 (8.3%) |
subtilosin_a | |||
1 | 0 (0%) | 0 (0%) | 0 (0%) |
0 | 5 (100%) | 7 (100%) | 12 (100%) |
# MIC across different clades
model <- lm(mic_sau~clade,data=mb_succinus)
summary(model)
##
## Call:
## lm(formula = mic_sau ~ clade, data = mb_succinus)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.520 -0.346 0.070 0.194 0.700
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.5020 0.1949 17.971 2.33e-08 ***
## cladePresent -1.0620 0.2639 -4.025 0.003 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4357 on 9 degrees of freedom
## (1 observation deleted due to missingness)
## Multiple R-squared: 0.6429, Adjusted R-squared: 0.6032
## F-statistic: 16.2 on 1 and 9 DF, p-value: 0.002996
Confint(model)
## Estimate 2.5 % 97.5 %
## (Intercept) 3.502 3.061169 3.9428312
## cladePresent -1.062 -1.658888 -0.4651118
emmeans(model,~clade)
## clade emmean SE df lower.CL upper.CL
## Absent 3.50 0.195 9 3.06 3.94
## Present 2.44 0.178 9 2.04 2.84
##
## Confidence level used: 0.95
model <- lm(mic_sub~clade,data=mb_succinus)
summary(model)
##
## Call:
## lm(formula = mic_sub ~ clade, data = mb_succinus)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.922 -0.456 -0.160 0.353 1.700
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.5020 0.3524 9.937 3.77e-06 ***
## cladePresent -1.0620 0.4772 -2.226 0.0531 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.788 on 9 degrees of freedom
## (1 observation deleted due to missingness)
## Multiple R-squared: 0.355, Adjusted R-squared: 0.2833
## F-statistic: 4.953 on 1 and 9 DF, p-value: 0.05308
Confint(model)
## Estimate 2.5 % 97.5 %
## (Intercept) 3.502 2.704779 4.29922133
## cladePresent -1.062 -2.141443 0.01744278
emmeans(model,~clade)
## clade emmean SE df lower.CL upper.CL
## Absent 3.50 0.352 9 2.70 4.30
## Present 2.44 0.322 9 1.71 3.17
##
## Confidence level used: 0.95
# ---- AMPs in SXYL/PXYL ----
# AIP2
table1(~aip_2|case_control,data=mb_xylosus)
Control (N=8) |
Case (N=10) |
Overall (N=18) |
|
---|---|---|---|
aip_2 | |||
0 | 2 (25.0%) | 4 (40.0%) | 6 (33.3%) |
1 | 6 (75.0%) | 6 (60.0%) | 12 (66.7%) |
model_1 <- glm(aip_2 ~ case_control,family=binomial(link="logit"),data=mb_xylosus)
summary(model_1)
##
## Call:
## glm(formula = aip_2 ~ case_control, family = binomial(link = "logit"),
## data = mb_xylosus)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.0986 0.8165 1.346 0.178
## case_controlCase -0.6931 1.0408 -0.666 0.505
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 22.915 on 17 degrees of freedom
## Residual deviance: 22.458 on 16 degrees of freedom
## AIC: 26.458
##
## Number of Fisher Scoring iterations: 4
exp(Confint(model_1))
## Estimate 2.5 % 97.5 %
## (Intercept) 3.0 0.69120194 20.475683
## case_controlCase 0.5 0.05327731 3.663896
effectsize::oddsratio_to_riskratio(model_1)
## Warning: 'p0' not provided.
## RR is relative to the intercept (p0 = 0.75) - make sure your intercept
## is meaningful.
## CIs are back-transformed from the logit scale.
## Parameter | Risk Ratio | 95% CI
## -----------------------------------------------
## (Intercept) | 0.75 |
## case control [Case] | 0.80 | [0.18, 1.22]
##
## Uncertainty intervals (profile-likelihood) and p-values (two-tailed)
## computed using a Wald z-distribution approximation.
emmeans(model_1,~case_control,type="response")
## case_control prob SE df asymp.LCL asymp.UCL
## Control 0.75 0.153 Inf 0.377 0.937
## Case 0.60 0.155 Inf 0.297 0.842
##
## Confidence level used: 0.95
## Intervals are back-transformed from the logit scale
# AIP3
table1(~aip_3|case_control,data=mb_xylosus)
Control (N=8) |
Case (N=10) |
Overall (N=18) |
|
---|---|---|---|
aip_3 | |||
0 | 6 (75.0%) | 7 (70.0%) | 13 (72.2%) |
1 | 2 (25.0%) | 3 (30.0%) | 5 (27.8%) |
model_2 <- glm(aip_3 ~ case_control,family=binomial(link="logit"),data=mb_xylosus)
summary(model_2)
##
## Call:
## glm(formula = aip_3 ~ case_control, family = binomial(link = "logit"),
## data = mb_xylosus)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.0986 0.8165 -1.346 0.178
## case_controlCase 0.2513 1.0690 0.235 0.814
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 21.270 on 17 degrees of freedom
## Residual deviance: 21.215 on 16 degrees of freedom
## AIC: 25.215
##
## Number of Fisher Scoring iterations: 4
exp(Confint(model_2))
## Estimate 2.5 % 97.5 %
## (Intercept) 0.3333333 0.04883842 1.446755
## case_controlCase 1.2857143 0.15782429 12.403957
effectsize::oddsratio_to_riskratio(model_2)
## Warning: 'p0' not provided.
## RR is relative to the intercept (p0 = 0.25) - make sure your intercept
## is meaningful.
## CIs are back-transformed from the logit scale.
## Parameter | Risk Ratio | 95% CI
## -----------------------------------------------
## (Intercept) | 0.25 |
## case control [Case] | 1.20 | [0.20, 3.22]
##
## Uncertainty intervals (profile-likelihood) and p-values (two-tailed)
## computed using a Wald z-distribution approximation.
emmeans(model_2,~case_control,type="response")
## case_control prob SE df asymp.LCL asymp.UCL
## Control 0.25 0.153 Inf 0.0630 0.623
## Case 0.30 0.145 Inf 0.0998 0.624
##
## Confidence level used: 0.95
## Intervals are back-transformed from the logit scale
# putative bacteriocin 194
table1(~putative_bacteriocin_194|case_control,data=mb_xylosus)
Control (N=8) |
Case (N=10) |
Overall (N=18) |
|
---|---|---|---|
putative_bacteriocin_194 | |||
0 | 5 (62.5%) | 6 (60.0%) | 11 (61.1%) |
1 | 3 (37.5%) | 4 (40.0%) | 7 (38.9%) |
model_3 <- glm(putative_bacteriocin_194 ~ case_control,family=binomial(link="logit"),data=mb_xylosus)
summary(model_3)
##
## Call:
## glm(formula = putative_bacteriocin_194 ~ case_control, family = binomial(link = "logit"),
## data = mb_xylosus)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.5108 0.7303 -0.699 0.484
## case_controlCase 0.1054 0.9747 0.108 0.914
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 24.057 on 17 degrees of freedom
## Residual deviance: 24.045 on 16 degrees of freedom
## AIC: 28.045
##
## Number of Fisher Scoring iterations: 4
exp(Confint(model_3))
## Estimate 2.5 % 97.5 %
## (Intercept) 0.600000 0.1230568 2.445302
## case_controlCase 1.111111 0.1616472 8.069622
effectsize::oddsratio_to_riskratio(model_3)
## Warning: 'p0' not provided.
## RR is relative to the intercept (p0 = 0.38) - make sure your intercept
## is meaningful.
## CIs are back-transformed from the logit scale.
## Parameter | Risk Ratio | 95% CI
## -----------------------------------------------
## (Intercept) | 0.38 |
## case control [Case] | 1.07 | [0.24, 2.21]
##
## Uncertainty intervals (profile-likelihood) and p-values (two-tailed)
## computed using a Wald z-distribution approximation.
emmeans(model_3,~case_control,type="response")
## case_control prob SE df asymp.LCL asymp.UCL
## Control 0.375 0.171 Inf 0.125 0.715
## Case 0.400 0.155 Inf 0.158 0.703
##
## Confidence level used: 0.95
## Intervals are back-transformed from the logit scale
# Association between AMPs and MIC in SXYL
# AIP2
model_1 <- lm(mic_sau ~ aip_2,data=mb_xylosus)
summary(model_1)
##
## Call:
## lm(formula = mic_sau ~ aip_2, data = mb_xylosus)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.43500 -0.25917 -0.13417 0.04438 0.94500
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.1450 0.1733 18.15 4.25e-12 ***
## aip_21 -0.1358 0.2122 -0.64 0.531
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4244 on 16 degrees of freedom
## Multiple R-squared: 0.02497, Adjusted R-squared: -0.03597
## F-statistic: 0.4097 on 1 and 16 DF, p-value: 0.5312
model_1 <- lm(mic_sub ~ aip_2,data=mb_xylosus)
summary(model_1)
##
## Call:
## lm(formula = mic_sub ~ aip_2, data = mb_xylosus)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.26833 -0.38250 -0.06542 0.56354 1.11167
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.9783 0.2678 11.122 6.13e-09 ***
## aip_21 0.1142 0.3280 0.348 0.732
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6559 on 16 degrees of freedom
## Multiple R-squared: 0.007517, Adjusted R-squared: -0.05451
## F-statistic: 0.1212 on 1 and 16 DF, p-value: 0.7323
# AIP3
model_1 <- lm(mic_sau ~ aip_3,data=mb_xylosus)
summary(model_1)
##
## Call:
## lm(formula = mic_sau ~ aip_3, data = mb_xylosus)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.47800 -0.25308 -0.08808 0.04442 0.92692
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.0031 0.1167 25.734 1.9e-14 ***
## aip_31 0.1849 0.2214 0.835 0.416
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4208 on 16 degrees of freedom
## Multiple R-squared: 0.04177, Adjusted R-squared: -0.01811
## F-statistic: 0.6975 on 1 and 16 DF, p-value: 0.4159
model_1 <- lm(mic_sub ~ aip_3,data=mb_xylosus)
summary(model_1)
##
## Call:
## lm(formula = mic_sub ~ aip_3, data = mb_xylosus)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.2780 -0.3700 -0.1100 0.5705 1.1020
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.0800 0.1822 16.904 1.26e-11 ***
## aip_31 -0.0920 0.3457 -0.266 0.794
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.657 on 16 degrees of freedom
## Multiple R-squared: 0.004407, Adjusted R-squared: -0.05782
## F-statistic: 0.07082 on 1 and 16 DF, p-value: 0.7935
# putative bacteriocin 194
model_2 <- lm(mic_sau ~ putative_bacteriocin_194,data=mb_xylosus)
summary(model_2)
##
## Call:
## lm(formula = mic_sau ~ putative_bacteriocin_194, data = mb_xylosus)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.41091 -0.26591 -0.17403 0.06286 0.98286
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.02091 0.12890 23.436 8.2e-14 ***
## putative_bacteriocin_1941 0.08623 0.20670 0.417 0.682
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4275 on 16 degrees of freedom
## Multiple R-squared: 0.01076, Adjusted R-squared: -0.05107
## F-statistic: 0.1741 on 1 and 16 DF, p-value: 0.6821
model_2 <- lm(mic_sub ~ putative_bacteriocin_194,data=mb_xylosus)
summary(model_2)
##
## Call:
## lm(formula = mic_sub ~ putative_bacteriocin_194, data = mb_xylosus)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.25429 -0.40182 -0.05805 0.56756 1.12571
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.1118 0.1972 15.782 3.56e-11 ***
## putative_bacteriocin_1941 -0.1475 0.3162 -0.467 0.647
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.654 on 16 degrees of freedom
## Multiple R-squared: 0.01342, Adjusted R-squared: -0.04824
## F-statistic: 0.2177 on 1 and 16 DF, p-value: 0.6471
# clades
target_isolates <- c("SXYL1", "SXYL2", "SXYL4", "SXYL10", "SXYL11", "SXYL13")
mb_xylosus <- mb_xylosus %>%
mutate(clade = ifelse(wgs_isolate_id %in% target_isolates, "Present_xylosus", "Absent_xylosus"))
mb_xylosus$clade <- ifelse(mb_xylosus$wgs_species_3=="SXYL",mb_xylosus$clade,"Ps_xylosus")
table1(~mic_sau + mic_sub+sau_inhibition_category+sub_inhibition_category+case_control+aip_1+aip_2+aip_3+aip_4+sactipeptides+subtilosin_a+putative_bacteriocin_193+putative_bacteriocin_194|clade,data=mb_xylosus)
Absent_xylosus (N=7) |
Present_xylosus (N=6) |
Ps_xylosus (N=5) |
Overall (N=18) |
|
---|---|---|---|---|
mic_sau | ||||
Mean (SD) | 2.98 (0.291) | 3.14 (0.505) | 3.06 (0.522) | 3.05 (0.417) |
Median [Min, Max] | 2.85 [2.74, 3.56] | 3.04 [2.71, 4.09] | 3.01 [2.61, 3.93] | 2.92 [2.61, 4.09] |
mic_sub | ||||
Mean (SD) | 3.12 (0.514) | 2.97 (0.915) | 3.06 (0.522) | 3.05 (0.639) |
Median [Min, Max] | 2.93 [2.56, 3.85] | 3.04 [1.71, 4.09] | 3.01 [2.61, 3.93] | 2.97 [1.71, 4.09] |
sau_inhibition_category | ||||
11 to 20 | 4 (57.1%) | 2 (33.3%) | 1 (20.0%) | 7 (38.9%) |
21 to 30 | 1 (14.3%) | 1 (16.7%) | 2 (40.0%) | 4 (22.2%) |
31 to 40 | 1 (14.3%) | 2 (33.3%) | 0 (0%) | 3 (16.7%) |
41 to 50 | 1 (14.3%) | 0 (0%) | 0 (0%) | 1 (5.6%) |
51 to 60 | 0 (0%) | 1 (16.7%) | 1 (20.0%) | 2 (11.1%) |
Top 10 | 0 (0%) | 0 (0%) | 1 (20.0%) | 1 (5.6%) |
sub_inhibition_category | ||||
11 to 20 | 1 (14.3%) | 0 (0%) | 2 (40.0%) | 3 (16.7%) |
21 to 30 | 3 (42.9%) | 1 (16.7%) | 2 (40.0%) | 6 (33.3%) |
31 to 40 | 1 (14.3%) | 1 (16.7%) | 0 (0%) | 2 (11.1%) |
51 to 60 | 2 (28.6%) | 1 (16.7%) | 1 (20.0%) | 4 (22.2%) |
61 to 70 | 0 (0%) | 1 (16.7%) | 0 (0%) | 1 (5.6%) |
Top 10 | 0 (0%) | 2 (33.3%) | 0 (0%) | 2 (11.1%) |
case_control | ||||
Control | 3 (42.9%) | 3 (50.0%) | 2 (40.0%) | 8 (44.4%) |
Case | 4 (57.1%) | 3 (50.0%) | 3 (60.0%) | 10 (55.6%) |
aip_1 | ||||
0 | 7 (100%) | 6 (100%) | 5 (100%) | 18 (100%) |
1 | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) |
aip_2 | ||||
0 | 2 (28.6%) | 4 (66.7%) | 0 (0%) | 6 (33.3%) |
1 | 5 (71.4%) | 2 (33.3%) | 5 (100%) | 12 (66.7%) |
aip_3 | ||||
0 | 6 (85.7%) | 2 (33.3%) | 5 (100%) | 13 (72.2%) |
1 | 1 (14.3%) | 4 (66.7%) | 0 (0%) | 5 (27.8%) |
aip_4 | ||||
0 | 6 (85.7%) | 6 (100%) | 5 (100%) | 17 (94.4%) |
1 | 1 (14.3%) | 0 (0%) | 0 (0%) | 1 (5.6%) |
sactipeptides | ||||
Mean (SD) | 1.00 (0) | 1.00 (0) | 1.00 (0) | 1.00 (0) |
Median [Min, Max] | 1.00 [1.00, 1.00] | 1.00 [1.00, 1.00] | 1.00 [1.00, 1.00] | 1.00 [1.00, 1.00] |
subtilosin_a | ||||
1 | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) |
0 | 7 (100%) | 6 (100%) | 5 (100%) | 18 (100%) |
putative_bacteriocin_193 | ||||
0 | 7 (100%) | 6 (100%) | 5 (100%) | 18 (100%) |
1 | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) |
putative_bacteriocin_194 | ||||
0 | 6 (85.7%) | 0 (0%) | 5 (100%) | 11 (61.1%) |
1 | 1 (14.3%) | 6 (100%) | 0 (0%) | 7 (38.9%) |
model <- lm(mic_sau~clade,data=mb_xylosus)
summary(model)
##
## Call:
## lm(formula = mic_sau ~ clade, data = mb_xylosus)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.45200 -0.23810 -0.09029 0.03333 0.95333
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.97857 0.16547 18.001 1.44e-11 ***
## cladePresent_xylosus 0.15810 0.24356 0.649 0.526
## cladePs_xylosus 0.08343 0.25634 0.325 0.749
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4378 on 15 degrees of freedom
## Multiple R-squared: 0.02745, Adjusted R-squared: -0.1022
## F-statistic: 0.2117 on 2 and 15 DF, p-value: 0.8116
Confint(model)
## Estimate 2.5 % 97.5 %
## (Intercept) 2.97857143 2.6258826 3.3312603
## cladePresent_xylosus 0.15809524 -0.3610487 0.6772391
## cladePs_xylosus 0.08342857 -0.4629546 0.6298118
emmeans(model,~clade)
## clade emmean SE df lower.CL upper.CL
## Absent_xylosus 2.98 0.165 15 2.63 3.33
## Present_xylosus 3.14 0.179 15 2.76 3.52
## Ps_xylosus 3.06 0.196 15 2.64 3.48
##
## Confidence level used: 0.95
Anova(model,type="III")
## Anova Table (Type III tests)
##
## Response: mic_sau
## Sum Sq Df F value Pr(>F)
## (Intercept) 62.103 1 324.0281 1.443e-11 ***
## clade 0.081 2 0.2117 0.8116
## Residuals 2.875 15
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
model <- lm(mic_sub~clade,data=mb_xylosus)
summary(model)
##
## Call:
## lm(formula = mic_sub ~ clade, data = mb_xylosus)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.2600 -0.3766 -0.0610 0.5589 1.1200
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.12143 0.25563 12.211 3.41e-09 ***
## cladePresent_xylosus -0.15143 0.37628 -0.402 0.693
## cladePs_xylosus -0.05943 0.39602 -0.150 0.883
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6763 on 15 degrees of freedom
## Multiple R-squared: 0.01074, Adjusted R-squared: -0.1212
## F-statistic: 0.08141 on 2 and 15 DF, p-value: 0.9222
Confint(model)
## Estimate 2.5 % 97.5 %
## (Intercept) 3.12142857 2.5765597 3.6662975
## cladePresent_xylosus -0.15142857 -0.9534539 0.6505967
## cladePs_xylosus -0.05942857 -0.9035358 0.7846787
emmeans(model,~clade)
## clade emmean SE df lower.CL upper.CL
## Absent_xylosus 3.12 0.256 15 2.58 3.67
## Present_xylosus 2.97 0.276 15 2.38 3.56
## Ps_xylosus 3.06 0.302 15 2.42 3.71
##
## Confidence level used: 0.95
Anova(model,type="III")
## Anova Table (Type III tests)
##
## Response: mic_sub
## Sum Sq Df F value Pr(>F)
## (Intercept) 68.203 1 149.0984 3.407e-09 ***
## clade 0.074 2 0.0814 0.9222
## Residuals 6.862 15
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# AIP2
table1(~aip_2|clade,data=mb_xylosus)
Absent_xylosus (N=7) |
Present_xylosus (N=6) |
Ps_xylosus (N=5) |
Overall (N=18) |
|
---|---|---|---|---|
aip_2 | ||||
0 | 2 (28.6%) | 4 (66.7%) | 0 (0%) | 6 (33.3%) |
1 | 5 (71.4%) | 2 (33.3%) | 5 (100%) | 12 (66.7%) |
fisher.test(table(mb_xylosus$aip_2,mb_xylosus$clade))
##
## Fisher's Exact Test for Count Data
##
## data: table(mb_xylosus$aip_2, mb_xylosus$clade)
## p-value = 0.07428
## alternative hypothesis: two.sided
# AIP3
table1(~aip_3|clade,data=mb_xylosus)
Absent_xylosus (N=7) |
Present_xylosus (N=6) |
Ps_xylosus (N=5) |
Overall (N=18) |
|
---|---|---|---|---|
aip_3 | ||||
0 | 6 (85.7%) | 2 (33.3%) | 5 (100%) | 13 (72.2%) |
1 | 1 (14.3%) | 4 (66.7%) | 0 (0%) | 5 (27.8%) |
fisher.test(table(mb_xylosus$aip_3,mb_xylosus$clade))
##
## Fisher's Exact Test for Count Data
##
## data: table(mb_xylosus$aip_3, mb_xylosus$clade)
## p-value = 0.03186
## alternative hypothesis: two.sided
# putative bacteriocin 194
table1(~putative_bacteriocin_194|clade,data=mb_xylosus)
Absent_xylosus (N=7) |
Present_xylosus (N=6) |
Ps_xylosus (N=5) |
Overall (N=18) |
|
---|---|---|---|---|
putative_bacteriocin_194 | ||||
0 | 6 (85.7%) | 0 (0%) | 5 (100%) | 11 (61.1%) |
1 | 1 (14.3%) | 6 (100%) | 0 (0%) | 7 (38.9%) |
fisher.test(table(mb_xylosus$putative_bacteriocin_194,mb_xylosus$clade))
##
## Fisher's Exact Test for Count Data
##
## data: table(mb_xylosus$putative_bacteriocin_194, mb_xylosus$clade)
## p-value = 0.0004085
## alternative hypothesis: two.sided
# Number of genes identified
virulence_annotated %>% group_by(vir_gene_type) %>% summarise(n=n_distinct(vir_gene_abbreviation))
## # A tibble: 6 × 2
## vir_gene_type n
## <chr> <int>
## 1 Adherence 37
## 2 Enterotoxins_exotoxins 87
## 3 Exoenzymes 22
## 4 Immune_evasion 34
## 5 Iron_uptake_metabolism 29
## 6 Toxin_genes 30
virulence_annotated %>% ungroup() %>% summarise(n=n_distinct(vir_gene_nonredundant))
## # A tibble: 1 × 1
## n
## <int>
## 1 200
virulence_annotated %>% group_by(vir_gene_type) %>% summarise(n=n_distinct(vir_gene_nonredundant))
## # A tibble: 6 × 2
## vir_gene_type n
## <chr> <int>
## 1 Adherence 30
## 2 Enterotoxins_exotoxins 59
## 3 Exoenzymes 18
## 4 Immune_evasion 34
## 5 Iron_uptake_metabolism 29
## 6 Toxin_genes 30
# Adherence genes
adherence_summary <- adherence_long %>% group_by(vir_gene_nonredundant,wgs_species_3) %>% summarise(n=max(presence_gene_nr)) %>% filter(n==1) %>% filter(wgs_species_3!="SUB")
## `summarise()` has grouped output by 'vir_gene_nonredundant'. You can override
## using the `.groups` argument.
adherence_summary %>% ungroup() %>% group_by(wgs_species_3) %>% summarise(n_genes=sum(n)) %>% mutate(prop_present = (n_genes/37)*100)
## # A tibble: 10 × 3
## wgs_species_3 n_genes prop_present
## <chr> <dbl> <dbl>
## 1 MSC 20 54.1
## 2 SAU 30 81.1
## 3 SCH 19 51.4
## 4 SCO 8 21.6
## 5 SDEV 17 45.9
## 6 SEQ 14 37.8
## 7 SHAEM 21 56.8
## 8 SPXYL 17 45.9
## 9 SSUC 14 37.8
## 10 SXYL 22 59.5
# Exoenzymes genes
exoenzymes_summary <- exoenzymes_long %>% group_by(vir_gene_nonredundant,wgs_species_3) %>% summarise(n=max(presence_gene_nr)) %>% filter(n==1) %>% filter(wgs_species_3!="SUB")
## `summarise()` has grouped output by 'vir_gene_nonredundant'. You can override
## using the `.groups` argument.
exoenzymes_summary %>% ungroup() %>% group_by(wgs_species_3) %>% summarise(n_genes=sum(n)) %>% mutate(prop_present = (n_genes/22)*100)
## # A tibble: 10 × 3
## wgs_species_3 n_genes prop_present
## <chr> <dbl> <dbl>
## 1 MSC 6 27.3
## 2 SAU 17 77.3
## 3 SCH 6 27.3
## 4 SCO 7 31.8
## 5 SDEV 4 18.2
## 6 SEQ 4 18.2
## 7 SHAEM 4 18.2
## 8 SPXYL 7 31.8
## 9 SSUC 9 40.9
## 10 SXYL 8 36.4
# Immune evasion genes
im_ev_summary <- im_ev_long %>% group_by(vir_gene_nonredundant,wgs_species_3) %>% summarise(n=max(presence_gene_nr)) %>% filter(n==1) %>% filter(wgs_species_3!="SUB")
## `summarise()` has grouped output by 'vir_gene_nonredundant'. You can override
## using the `.groups` argument.
im_ev_summary %>% ungroup() %>% group_by(wgs_species_3) %>% summarise(n_genes=sum(n)) %>% mutate(prop_present = (n_genes/35)*100)
## # A tibble: 10 × 3
## wgs_species_3 n_genes prop_present
## <chr> <dbl> <dbl>
## 1 MSC 8 22.9
## 2 SAU 34 97.1
## 3 SCH 30 85.7
## 4 SCO 8 22.9
## 5 SDEV 12 34.3
## 6 SEQ 15 42.9
## 7 SHAEM 18 51.4
## 8 SPXYL 4 11.4
## 9 SSUC 4 11.4
## 10 SXYL 28 80
# Iron related genes
iron_summary <- iron_long %>% group_by(vir_gene_nonredundant,wgs_species_3) %>% summarise(n=max(presence_gene_nr)) %>% filter(n==1) %>% filter(wgs_species_3!="SUB")
## `summarise()` has grouped output by 'vir_gene_nonredundant'. You can override
## using the `.groups` argument.
iron_summary %>% ungroup() %>% group_by(wgs_species_3) %>% summarise(n_genes=sum(n)) %>% mutate(prop_present = (n_genes/29)*100)
## # A tibble: 10 × 3
## wgs_species_3 n_genes prop_present
## <chr> <dbl> <dbl>
## 1 MSC 17 58.6
## 2 SAU 29 100
## 3 SCH 14 48.3
## 4 SCO 10 34.5
## 5 SDEV 12 41.4
## 6 SEQ 20 69.0
## 7 SHAEM 16 55.2
## 8 SPXYL 11 37.9
## 9 SSUC 11 37.9
## 10 SXYL 10 34.5
# Enterotoxins and exotoxins genes
enterotoxin_summary <- enterotoxin_long %>% group_by(vir_gene_nonredundant,wgs_species_3) %>% summarise(n=max(presence_gene_nr)) %>% filter(n==1) %>% filter(wgs_species_3!="SUB")
## `summarise()` has grouped output by 'vir_gene_nonredundant'. You can override
## using the `.groups` argument.
enterotoxin_summary %>% ungroup() %>% group_by(wgs_species_3) %>% summarise(n_genes=sum(n)) %>% mutate(prop_present = (n_genes/87)*100)
## # A tibble: 2 × 3
## wgs_species_3 n_genes prop_present
## <chr> <dbl> <dbl>
## 1 SAU 59 67.8
## 2 SCH 36 41.4
# Toxin genes
toxin_summary <- toxin_long %>% group_by(vir_gene_nonredundant,wgs_species_3) %>% summarise(n=max(presence_gene_nr)) %>% filter(n==1) %>% filter(wgs_species_3!="SUB")
## `summarise()` has grouped output by 'vir_gene_nonredundant'. You can override
## using the `.groups` argument.
toxin_summary %>% ungroup() %>% group_by(wgs_species_3) %>% summarise(n_genes=sum(n)) %>% mutate(prop_present = (n_genes/36)*100)
## # A tibble: 10 × 3
## wgs_species_3 n_genes prop_present
## <chr> <dbl> <dbl>
## 1 MSC 3 8.33
## 2 SAU 27 75
## 3 SCH 10 27.8
## 4 SCO 8 22.2
## 5 SDEV 7 19.4
## 6 SEQ 6 16.7
## 7 SHAEM 8 22.2
## 8 SPXYL 9 25
## 9 SSUC 7 19.4
## 10 SXYL 8 22.2
# ---- Adherence genes ----
adherence_sau <- adherence_long %>% filter(grepl("SAU",wgs_isolate_id))
adherence_plot_1 <- adherence_sau %>%
ggplot(aes(x = vir_gene_nonredundant, y = fct_reorder(adherence_sau$wgs_isolate_id,adherence_sau$wgs_id))) +
geom_tile(aes(fill = presence_gene), color = "black") +
scale_fill_manual(labels = c("No", "Yes"), values = c("white", "#009999")) +
labs(y = "Isolate ID", x = "Gene ID",fill="Presence gene",title="Staphylococcus aureus") +
scale_y_discrete(limits = rev) +
theme(plot.title=element_text(face="italic"),axis.text.x=element_blank(),axis.title.x = element_blank())
adherence_sch <- adherence_long %>% filter(grepl("SCH",wgs_isolate_id))
adherence_plot_2 <- adherence_sch %>%
ggplot(aes(x = vir_gene_nonredundant, y = fct_reorder(adherence_sch$wgs_isolate_id,adherence_sch$wgs_id))) +
geom_tile(aes(fill = presence_gene), color = "black") +
scale_fill_manual(labels = c("No", "Yes"), values = c("white", "#009999")) +
labs(y = "Isolate ID", x = "Gene ID",fill="Presence gene",title="Staphylococcus chromogenes") +
scale_y_discrete(limits = rev) +
theme(plot.title=element_text(face="italic"),axis.text.x=element_blank(),axis.title.x = element_blank())
adherence_shaem <- adherence_long %>% filter(grepl("SHAEM",wgs_isolate_id))
adherence_plot_3 <- adherence_shaem %>%
ggplot(aes(x = vir_gene_nonredundant, y = fct_reorder(adherence_shaem$wgs_isolate_id,adherence_shaem$wgs_id))) +
geom_tile(aes(fill = presence_gene), color = "black") +
scale_fill_manual(labels = c("No", "Yes"), values = c("white", "#009999")) +
labs(y = "Isolate ID", x = "Gene ID",fill="Presence gene",title="Staphylococcus haemolyticus") +
scale_y_discrete(limits = rev) +
theme(plot.title=element_text(face="italic"),axis.text.x=element_blank(),axis.title.x = element_blank())
adherence_ssc <- adherence_long %>% filter(grepl("MSC",wgs_isolate_id))
adherence_plot_4 <- adherence_ssc %>%
ggplot(aes(x = vir_gene_nonredundant, y = fct_reorder(adherence_ssc$wgs_isolate_id,adherence_ssc$wgs_id))) +
geom_tile(aes(fill = presence_gene), color = "black") +
scale_fill_manual(labels = c("No", "Yes"), values = c("white", "#009999")) +
labs(y = "Isolate ID", x = "Gene ID",fill="Presence gene",title="Mammaliicoccus sciuri") +
scale_y_discrete(limits = rev) +
theme(plot.title=element_text(face="italic"),axis.text.x=element_blank(),axis.title.x = element_blank())
adherence_ssuc <- adherence_long %>% filter(grepl("SSUC",wgs_isolate_id))
adherence_plot_5 <- adherence_ssuc %>%
ggplot(aes(x = vir_gene_nonredundant, y = fct_reorder(adherence_ssuc$wgs_isolate_id,adherence_ssuc$wgs_id))) +
geom_tile(aes(fill = presence_gene), color = "black") +
scale_fill_manual(labels = c("No", "Yes"), values = c("white", "#009999")) +
labs(y = "Isolate ID", x = "Gene ID",fill="Presence gene",title="Staphylococcus succinus") +
scale_y_discrete(limits = rev) +
theme(plot.title=element_text(face="italic"),axis.text.x=element_blank(),axis.title.x = element_blank())
adherence_ssxyl <- adherence_long %>% filter(grepl("SXYL",wgs_isolate_id))
adherence_ssxyl$wgs_isolate_id <- fct_reorder(adherence_ssxyl$wgs_isolate_id,adherence_ssxyl$wgs_id)
adherence_spxyl <- adherence_long %>% filter(grepl("SPXYL",wgs_isolate_id))
levels(adherence_long$wgs_isolate_id)
## NULL
adherence_spxyl$wgs_isolate_id <- fct_reorder(adherence_spxyl$wgs_isolate_id,adherence_spxyl$wgs_id)
adherence_sxyl_spxyl <- rbind(adherence_ssxyl,adherence_spxyl)
#adherence_ssxyl$wgs_isolate_id <- fct_reorder(adherence_ssxyl$wgs_isolate_id,adherence_ssxyl$wgs_id)
table(adherence_long$wgs_isolate_id)
##
## MSC1 MSC2 MSC3 MSC4 MSC5 MSC6 SAU1 SAU2 SAU3 SCH1
## 30 30 30 30 30 30 30 30 30 30
## SCH10 SCH11 SCH12 SCH13 SCH14 SCH15 SCH16 SCH17 SCH18 SCH19
## 30 30 30 30 30 30 30 30 30 30
## SCH2 SCH20 SCH21 SCH3 SCH4 SCH5 SCH6 SCH7 SCH8 SCH9
## 30 30 30 30 30 30 30 30 30 30
## SCO1 SDEV1 SDEV2 SEQ1 SHAEM1 SHAEM10 SHAEM11 SHAEM12 SHAEM13 SHAEM14
## 30 30 30 30 30 30 30 30 30 30
## SHAEM15 SHAEM16 SHAEM17 SHAEM18 SHAEM19 SHAEM2 SHAEM3 SHAEM4 SHAEM5 SHAEM6
## 30 30 30 30 30 30 30 30 30 30
## SHAEM7 SHAEM8 SHAEM9 SPXYL1 SPXYL2 SPXYL3 SPXYL4 SPXYL5 SSUC1 SSUC10
## 30 30 30 30 30 30 30 30 30 30
## SSUC11 SSUC12 SSUC2 SSUC3 SSUC4 SSUC5 SSUC6 SSUC7 SSUC8 SSUC9
## 30 30 30 30 30 30 30 30 30 30
## SUB1 SXYL1 SXYL10 SXYL11 SXYL12 SXYL13 SXYL2 SXYL3 SXYL4 SXYL5
## 30 30 30 30 30 30 30 30 30 30
## SXYL6 SXYL7 SXYL8 SXYL9
## 30 30 30 30
adherence_plot_6 <- adherence_sxyl_spxyl %>%
ggplot(aes(x = vir_gene_nonredundant, y = wgs_isolate_id)) +
geom_tile(aes(fill = presence_gene), color = "black") +
scale_fill_manual(labels = c("No", "Yes"), values = c("white", "#009999")) +
labs(y = "Isolate ID", x = "Gene ID",fill="Presence gene",title="Staphylococcus xylosus/pseudoxylosus") +
scale_y_discrete(limits = rev) +
theme(plot.title=element_text(face="italic"),axis.text.x=element_blank(),axis.title.x = element_blank())
adherence_sco <- adherence_long %>% filter(grepl("SCO",wgs_isolate_id))
adherence_sco$wgs_isolate_id <- fct_reorder(adherence_sco$wgs_isolate_id,adherence_sco$wgs_id)
adherence_sdev <- adherence_long %>% filter(grepl("SDEV",wgs_isolate_id))
levels(adherence_long$wgs_isolate_id)
## NULL
adherence_sdev$wgs_isolate_id <- fct_reorder(adherence_sdev$wgs_isolate_id,adherence_sdev$wgs_id)
adherence_seq <- adherence_long %>% filter(grepl("SEQ",wgs_isolate_id))
adherence_seq$wgs_isolate_id <- fct_reorder(adherence_seq$wgs_isolate_id,adherence_seq$wgs_id)
adherence_other <- rbind(adherence_sco,adherence_sdev,adherence_seq)
table(adherence_long$wgs_isolate_id)
##
## MSC1 MSC2 MSC3 MSC4 MSC5 MSC6 SAU1 SAU2 SAU3 SCH1
## 30 30 30 30 30 30 30 30 30 30
## SCH10 SCH11 SCH12 SCH13 SCH14 SCH15 SCH16 SCH17 SCH18 SCH19
## 30 30 30 30 30 30 30 30 30 30
## SCH2 SCH20 SCH21 SCH3 SCH4 SCH5 SCH6 SCH7 SCH8 SCH9
## 30 30 30 30 30 30 30 30 30 30
## SCO1 SDEV1 SDEV2 SEQ1 SHAEM1 SHAEM10 SHAEM11 SHAEM12 SHAEM13 SHAEM14
## 30 30 30 30 30 30 30 30 30 30
## SHAEM15 SHAEM16 SHAEM17 SHAEM18 SHAEM19 SHAEM2 SHAEM3 SHAEM4 SHAEM5 SHAEM6
## 30 30 30 30 30 30 30 30 30 30
## SHAEM7 SHAEM8 SHAEM9 SPXYL1 SPXYL2 SPXYL3 SPXYL4 SPXYL5 SSUC1 SSUC10
## 30 30 30 30 30 30 30 30 30 30
## SSUC11 SSUC12 SSUC2 SSUC3 SSUC4 SSUC5 SSUC6 SSUC7 SSUC8 SSUC9
## 30 30 30 30 30 30 30 30 30 30
## SUB1 SXYL1 SXYL10 SXYL11 SXYL12 SXYL13 SXYL2 SXYL3 SXYL4 SXYL5
## 30 30 30 30 30 30 30 30 30 30
## SXYL6 SXYL7 SXYL8 SXYL9
## 30 30 30 30
adherence_plot_7 <- adherence_other %>%
ggplot(aes(x = vir_gene_nonredundant, y = wgs_isolate_id)) +
geom_tile(aes(fill = presence_gene), color = "black") +
scale_fill_manual(labels = c("No", "Yes"), values = c("white", "#009999")) +
labs(y = "Isolate ID", x = "Adherence",fill="Presence gene",title="Other") +
scale_y_discrete(limits = rev) +
theme(plot.title=element_text(face="italic"),,axis.text.x = element_text(angle = 45, hjust = 1))
# Multipanel figure
adherence_plot <- ggarrange(adherence_plot_1 + rremove("xlab")+ rremove("ylab"),adherence_plot_2 + rremove("xlab")+ rremove("ylab"),adherence_plot_3 + rremove("xlab")+ rremove("ylab"),adherence_plot_4 + rremove("xlab")+ rremove("ylab"),adherence_plot_5 + rremove("xlab")+ rremove("ylab"),adherence_plot_6 + rremove("xlab")+ rremove("ylab"),adherence_plot_7 + rremove("xlab")+ rremove("ylab"), ncol = 1, nrow = 7, common.legend = TRUE,align ="v",labels = c("A", "B", "C","D","E","F","G"),heights = c(1.25,4.5,4.25,1.75,3,3.5,2.25))
annotate_figure(adherence_plot,
left = text_grob("Isolate ID", color = "black", rot = 90, size = 12))
ggsave(plot = last_plot(),"./figures/adherence.png",width = 20, height = 40, units = "cm")
ggsave(plot = last_plot(),"./figures/adherence.pdf",width = 20, height = 40, units = "cm")
# ---- exoenzymes genes ----
exoenzymes_sau <- exoenzymes_long %>% filter(grepl("SAU",wgs_isolate_id))
exoenzymes_plot_1 <- exoenzymes_sau %>%
ggplot(aes(x = vir_gene_nonredundant, y = fct_reorder(exoenzymes_sau$wgs_isolate_id,exoenzymes_sau$wgs_id))) +
geom_tile(aes(fill = presence_gene), color = "black") +
scale_fill_manual(labels = c("No", "Yes"), values = c("white", "#009999")) +
labs(y = "Isolate ID", x = "Gene ID",fill="Presence gene",title="Staphylococcus aureus") +
scale_y_discrete(limits = rev) +
theme(plot.title=element_text(face="italic"),axis.text.x=element_blank(),axis.title.x = element_blank())
exoenzymes_sch <- exoenzymes_long %>% filter(grepl("SCH",wgs_isolate_id))
exoenzymes_plot_2 <- exoenzymes_sch %>%
ggplot(aes(x = vir_gene_nonredundant, y = fct_reorder(exoenzymes_sch$wgs_isolate_id,exoenzymes_sch$wgs_id))) +
geom_tile(aes(fill = presence_gene), color = "black") +
scale_fill_manual(labels = c("No", "Yes"), values = c("white", "#009999")) +
labs(y = "Isolate ID", x = "Gene ID",fill="Presence gene",title="Staphylococcus chromogenes") +
scale_y_discrete(limits = rev) +
theme(plot.title=element_text(face="italic"),axis.text.x=element_blank(),axis.title.x = element_blank())
exoenzymes_shaem <- exoenzymes_long %>% filter(grepl("SHAEM",wgs_isolate_id))
exoenzymes_plot_3 <- exoenzymes_shaem %>%
ggplot(aes(x = vir_gene_nonredundant, y = fct_reorder(exoenzymes_shaem$wgs_isolate_id,exoenzymes_shaem$wgs_id))) +
geom_tile(aes(fill = presence_gene), color = "black") +
scale_fill_manual(labels = c("No", "Yes"), values = c("white", "#009999")) +
labs(y = "Isolate ID", x = "Gene ID",fill="Presence gene",title="Staphylococcus haemolyticus") +
scale_y_discrete(limits = rev) +
theme(plot.title=element_text(face="italic"),axis.text.x=element_blank(),axis.title.x = element_blank())
exoenzymes_ssc <- exoenzymes_long %>% filter(grepl("MSC",wgs_isolate_id))
exoenzymes_plot_4 <- exoenzymes_ssc %>%
ggplot(aes(x = vir_gene_nonredundant, y = fct_reorder(exoenzymes_ssc$wgs_isolate_id,exoenzymes_ssc$wgs_id))) +
geom_tile(aes(fill = presence_gene), color = "black") +
scale_fill_manual(labels = c("No", "Yes"), values = c("white", "#009999")) +
labs(y = "Isolate ID", x = "Gene ID",fill="Presence gene",title="Mammaliicoccus sciuri") +
scale_y_discrete(limits = rev) +
theme(plot.title=element_text(face="italic"),axis.text.x=element_blank(),axis.title.x = element_blank())
exoenzymes_ssuc <- exoenzymes_long %>% filter(grepl("SSUC",wgs_isolate_id))
exoenzymes_plot_5 <- exoenzymes_ssuc %>%
ggplot(aes(x = vir_gene_nonredundant, y = fct_reorder(exoenzymes_ssuc$wgs_isolate_id,exoenzymes_ssuc$wgs_id))) +
geom_tile(aes(fill = presence_gene), color = "black") +
scale_fill_manual(labels = c("No", "Yes"), values = c("white", "#009999")) +
labs(y = "Isolate ID", x = "Gene ID",fill="Presence gene",title="Staphylococcus succinus") +
scale_y_discrete(limits = rev) +
theme(plot.title=element_text(face="italic"),axis.text.x=element_blank(),axis.title.x = element_blank())
exoenzymes_ssxyl <- exoenzymes_long %>% filter(grepl("SXYL",wgs_isolate_id))
exoenzymes_ssxyl$wgs_isolate_id <- fct_reorder(exoenzymes_ssxyl$wgs_isolate_id,exoenzymes_ssxyl$wgs_id)
exoenzymes_spxyl <- exoenzymes_long %>% filter(grepl("SPXYL",wgs_isolate_id))
levels(exoenzymes_long$wgs_isolate_id)
## NULL
exoenzymes_spxyl$wgs_isolate_id <- fct_reorder(exoenzymes_spxyl$wgs_isolate_id,exoenzymes_spxyl$wgs_id)
exoenzymes_sxyl_spxyl <- rbind(exoenzymes_ssxyl,exoenzymes_spxyl)
#exoenzymes_ssxyl$wgs_isolate_id <- fct_reorder(exoenzymes_ssxyl$wgs_isolate_id,exoenzymes_ssxyl$wgs_id)
table(exoenzymes_long$wgs_isolate_id)
##
## MSC1 MSC2 MSC3 MSC4 MSC5 MSC6 SAU1 SAU2 SAU3 SCH1
## 18 18 18 18 18 18 18 18 18 18
## SCH10 SCH11 SCH12 SCH13 SCH14 SCH15 SCH16 SCH17 SCH18 SCH19
## 18 18 18 18 18 18 18 18 18 18
## SCH2 SCH20 SCH21 SCH3 SCH4 SCH5 SCH6 SCH7 SCH8 SCH9
## 18 18 18 18 18 18 18 18 18 18
## SCO1 SDEV1 SDEV2 SEQ1 SHAEM1 SHAEM10 SHAEM11 SHAEM12 SHAEM13 SHAEM14
## 18 18 18 18 18 18 18 18 18 18
## SHAEM15 SHAEM16 SHAEM17 SHAEM18 SHAEM19 SHAEM2 SHAEM3 SHAEM4 SHAEM5 SHAEM6
## 18 18 18 18 18 18 18 18 18 18
## SHAEM7 SHAEM8 SHAEM9 SPXYL1 SPXYL2 SPXYL3 SPXYL4 SPXYL5 SSUC1 SSUC10
## 18 18 18 18 18 18 18 18 18 18
## SSUC11 SSUC12 SSUC2 SSUC3 SSUC4 SSUC5 SSUC6 SSUC7 SSUC8 SSUC9
## 18 18 18 18 18 18 18 18 18 18
## SUB1 SXYL1 SXYL10 SXYL11 SXYL12 SXYL13 SXYL2 SXYL3 SXYL4 SXYL5
## 18 18 18 18 18 18 18 18 18 18
## SXYL6 SXYL7 SXYL8 SXYL9
## 18 18 18 18
exoenzymes_plot_6 <- exoenzymes_sxyl_spxyl %>%
ggplot(aes(x = vir_gene_nonredundant, y = wgs_isolate_id)) +
geom_tile(aes(fill = presence_gene), color = "black") +
scale_fill_manual(labels = c("No", "Yes"), values = c("white", "#009999")) +
labs(y = "Isolate ID", x = "Gene ID",fill="Presence gene",title="Staphylococcus xylosus/pseudoxylosus") +
scale_y_discrete(limits = rev) +
theme(plot.title=element_text(face="italic"),axis.text.x=element_blank(),axis.title.x = element_blank())
exoenzymes_sco <- exoenzymes_long %>% filter(grepl("SCO",wgs_isolate_id))
exoenzymes_sco$wgs_isolate_id <- fct_reorder(exoenzymes_sco$wgs_isolate_id,exoenzymes_sco$wgs_id)
exoenzymes_sdev <- exoenzymes_long %>% filter(grepl("SDEV",wgs_isolate_id))
levels(exoenzymes_long$wgs_isolate_id)
## NULL
exoenzymes_sdev$wgs_isolate_id <- fct_reorder(exoenzymes_sdev$wgs_isolate_id,exoenzymes_sdev$wgs_id)
exoenzymes_seq <- exoenzymes_long %>% filter(grepl("SEQ",wgs_isolate_id))
exoenzymes_seq$wgs_isolate_id <- fct_reorder(exoenzymes_seq$wgs_isolate_id,exoenzymes_seq$wgs_id)
exoenzymes_other <- rbind(exoenzymes_sco,exoenzymes_sdev,exoenzymes_seq)
table(exoenzymes_long$wgs_isolate_id)
##
## MSC1 MSC2 MSC3 MSC4 MSC5 MSC6 SAU1 SAU2 SAU3 SCH1
## 18 18 18 18 18 18 18 18 18 18
## SCH10 SCH11 SCH12 SCH13 SCH14 SCH15 SCH16 SCH17 SCH18 SCH19
## 18 18 18 18 18 18 18 18 18 18
## SCH2 SCH20 SCH21 SCH3 SCH4 SCH5 SCH6 SCH7 SCH8 SCH9
## 18 18 18 18 18 18 18 18 18 18
## SCO1 SDEV1 SDEV2 SEQ1 SHAEM1 SHAEM10 SHAEM11 SHAEM12 SHAEM13 SHAEM14
## 18 18 18 18 18 18 18 18 18 18
## SHAEM15 SHAEM16 SHAEM17 SHAEM18 SHAEM19 SHAEM2 SHAEM3 SHAEM4 SHAEM5 SHAEM6
## 18 18 18 18 18 18 18 18 18 18
## SHAEM7 SHAEM8 SHAEM9 SPXYL1 SPXYL2 SPXYL3 SPXYL4 SPXYL5 SSUC1 SSUC10
## 18 18 18 18 18 18 18 18 18 18
## SSUC11 SSUC12 SSUC2 SSUC3 SSUC4 SSUC5 SSUC6 SSUC7 SSUC8 SSUC9
## 18 18 18 18 18 18 18 18 18 18
## SUB1 SXYL1 SXYL10 SXYL11 SXYL12 SXYL13 SXYL2 SXYL3 SXYL4 SXYL5
## 18 18 18 18 18 18 18 18 18 18
## SXYL6 SXYL7 SXYL8 SXYL9
## 18 18 18 18
exoenzymes_plot_7 <- exoenzymes_other %>%
ggplot(aes(x = vir_gene_nonredundant, y = wgs_isolate_id)) +
geom_tile(aes(fill = presence_gene), color = "black") +
scale_fill_manual(labels = c("No", "Yes"), values = c("white", "#009999")) +
labs(y = "Isolate ID", x = "Exoenzymes",fill="Presence gene",title="Other") +
scale_y_discrete(limits = rev) +
theme(plot.title=element_text(face="italic"),axis.text.x = element_text(angle = 45, hjust = 1))
# Multipanel figure
exoenzymes_plot <- ggarrange(exoenzymes_plot_1 + rremove("xlab")+ rremove("ylab"),exoenzymes_plot_2 + rremove("xlab")+ rremove("ylab"),exoenzymes_plot_3 + rremove("xlab")+ rremove("ylab"),exoenzymes_plot_4 + rremove("xlab")+ rremove("ylab"),exoenzymes_plot_5 + rremove("xlab")+ rremove("ylab"),exoenzymes_plot_6 + rremove("xlab")+ rremove("ylab"),exoenzymes_plot_7 + rremove("xlab")+ rremove("ylab"), ncol = 1, nrow = 7, common.legend = TRUE,align ="v",labels = c("A", "B", "C","D","E","F","G"),heights = c(1.25,4.5,4.25,1.75,3,3.5,2.25))
annotate_figure(exoenzymes_plot,
left = text_grob("Isolate ID", color = "black", rot = 90, size = 12))
ggsave(plot = last_plot(),"./figures/exoenzymes.pdf",width = 20, height = 40, units = "cm")
ggsave(plot = last_plot(),"./figures/exoenzymes.png",width = 20, height = 40, units = "cm")
# plot adherence + exoenzymes
adherence_exoenzymes_plot <- ggarrange(
adherence_plot_1 + rremove("xlab") + rremove("ylab"),
exoenzymes_plot_1 + rremove("xlab") + rremove("ylab") ,
adherence_plot_2 + rremove("xlab") + rremove("ylab"),
exoenzymes_plot_2 + rremove("xlab") + rremove("ylab") ,
adherence_plot_3 + rremove("xlab") + rremove("ylab"),
exoenzymes_plot_3 + rremove("xlab") + rremove("ylab") ,
adherence_plot_4 + rremove("xlab") + rremove("ylab"),
exoenzymes_plot_4 + rremove("xlab") + rremove("ylab") ,
adherence_plot_5 + rremove("xlab") + rremove("ylab"),
exoenzymes_plot_5 + rremove("xlab") + rremove("ylab") ,
adherence_plot_6 + rremove("xlab") + rremove("ylab"),
exoenzymes_plot_6 + rremove("xlab") + rremove("ylab") ,
adherence_plot_7 + rremove("ylab"),
exoenzymes_plot_7 + rremove("ylab") ,
ncol = 2, nrow = 7, common.legend = TRUE, align = "v",
labels = c("A1", "A2", "B1", "B2", "C1", "C2", "D1", "D2", "E1", "E2", "F1", "F2", "G1", "G2"),
heights = c(1.25,4.5, 4.25, 1.75,3,3.5, 2.25)
)
annotate_figure(adherence_exoenzymes_plot,
left = text_grob("Isolate ID", color = "black", rot = 90, size = 12))
ggsave(plot = last_plot(),"./figures/figure_8.pdf",width = 40, height = 40, units = "cm",dpi=600)
ggsave(plot = last_plot(),"./figures/figure_8.png",width = 40, height = 40, units = "cm",dpi=600)
ggsave(plot = last_plot(),"./figures/figure_8.jpeg",width = 40, height = 40, units = "cm",dpi=600)
# ---- im_ev genes ----
im_ev_sau <- im_ev_long %>% filter(grepl("SAU",wgs_isolate_id))
im_ev_plot_1 <- im_ev_sau %>%
ggplot(aes(x = vir_gene_nonredundant, y = fct_reorder(im_ev_sau$wgs_isolate_id,im_ev_sau$wgs_id))) +
geom_tile(aes(fill = presence_gene), color = "black") +
scale_fill_manual(labels = c("No", "Yes"), values = c("white", "#009999")) +
labs(y = "Isolate ID", x = "Gene ID",fill="Presence gene",title="Staphylococcus aureus") +
scale_y_discrete(limits = rev) +
theme(plot.title=element_text(face="italic"),axis.text.x=element_blank(),axis.title.x = element_blank())
im_ev_sch <- im_ev_long %>% filter(grepl("SCH",wgs_isolate_id))
im_ev_plot_2 <- im_ev_sch %>%
ggplot(aes(x = vir_gene_nonredundant, y = fct_reorder(im_ev_sch$wgs_isolate_id,im_ev_sch$wgs_id))) +
geom_tile(aes(fill = presence_gene), color = "black") +
scale_fill_manual(labels = c("No", "Yes"), values = c("white", "#009999")) +
labs(y = "Isolate ID", x = "Gene ID",fill="Presence gene",title="Staphylococcus chromogenes") +
scale_y_discrete(limits = rev) +
theme(plot.title=element_text(face="italic"),axis.text.x=element_blank(),axis.title.x = element_blank())
im_ev_shaem <- im_ev_long %>% filter(grepl("SHAEM",wgs_isolate_id))
im_ev_plot_3 <- im_ev_shaem %>%
ggplot(aes(x = vir_gene_nonredundant, y = fct_reorder(im_ev_shaem$wgs_isolate_id,im_ev_shaem$wgs_id))) +
geom_tile(aes(fill = presence_gene), color = "black") +
scale_fill_manual(labels = c("No", "Yes"), values = c("white", "#009999")) +
labs(y = "Isolate ID", x = "Gene ID",fill="Presence gene",title="Staphylococcus haemolyticus") +
scale_y_discrete(limits = rev) +
theme(plot.title=element_text(face="italic"),axis.text.x=element_blank(),axis.title.x = element_blank())
im_ev_ssc <- im_ev_long %>% filter(grepl("MSC",wgs_isolate_id))
im_ev_plot_4 <- im_ev_ssc %>%
ggplot(aes(x = vir_gene_nonredundant, y = fct_reorder(im_ev_ssc$wgs_isolate_id,im_ev_ssc$wgs_id))) +
geom_tile(aes(fill = presence_gene), color = "black") +
scale_fill_manual(labels = c("No", "Yes"), values = c("white", "#009999")) +
labs(y = "Isolate ID", x = "Gene ID",fill="Presence gene",title="Mammaliicoccus sciuri") +
scale_y_discrete(limits = rev) +
theme(plot.title=element_text(face="italic"),axis.text.x=element_blank(),axis.title.x = element_blank())
im_ev_ssuc <- im_ev_long %>% filter(grepl("SSUC",wgs_isolate_id))
im_ev_plot_5 <- im_ev_ssuc %>%
ggplot(aes(x = vir_gene_nonredundant, y = fct_reorder(im_ev_ssuc$wgs_isolate_id,im_ev_ssuc$wgs_id))) +
geom_tile(aes(fill = presence_gene), color = "black") +
scale_fill_manual(labels = c("No", "Yes"), values = c("white", "#009999")) +
labs(y = "Isolate ID", x = "Gene ID",fill="Presence gene",title="Staphylococcus succinus") +
scale_y_discrete(limits = rev) +
theme(plot.title=element_text(face="italic"),axis.text.x=element_blank(),axis.title.x = element_blank())
im_ev_ssxyl <- im_ev_long %>% filter(grepl("SXYL",wgs_isolate_id))
im_ev_ssxyl$wgs_isolate_id <- fct_reorder(im_ev_ssxyl$wgs_isolate_id,im_ev_ssxyl$wgs_id)
im_ev_spxyl <- im_ev_long %>% filter(grepl("SPXYL",wgs_isolate_id))
levels(im_ev_long$wgs_isolate_id)
## NULL
im_ev_spxyl$wgs_isolate_id <- fct_reorder(im_ev_spxyl$wgs_isolate_id,im_ev_spxyl$wgs_id)
im_ev_sxyl_spxyl <- rbind(im_ev_ssxyl,im_ev_spxyl)
#im_ev_ssxyl$wgs_isolate_id <- fct_reorder(im_ev_ssxyl$wgs_isolate_id,im_ev_ssxyl$wgs_id)
table(im_ev_long$wgs_isolate_id)
##
## MSC1 MSC2 MSC3 MSC4 MSC5 MSC6 SAU1 SAU2 SAU3 SCH1
## 34 34 34 34 34 34 34 34 34 34
## SCH10 SCH11 SCH12 SCH13 SCH14 SCH15 SCH16 SCH17 SCH18 SCH19
## 34 34 34 34 34 34 34 34 34 34
## SCH2 SCH20 SCH21 SCH3 SCH4 SCH5 SCH6 SCH7 SCH8 SCH9
## 34 34 34 34 34 34 34 34 34 34
## SCO1 SDEV1 SDEV2 SEQ1 SHAEM1 SHAEM10 SHAEM11 SHAEM12 SHAEM13 SHAEM14
## 34 34 34 34 34 34 34 34 34 34
## SHAEM15 SHAEM16 SHAEM17 SHAEM18 SHAEM19 SHAEM2 SHAEM3 SHAEM4 SHAEM5 SHAEM6
## 34 34 34 34 34 34 34 34 34 34
## SHAEM7 SHAEM8 SHAEM9 SPXYL1 SPXYL2 SPXYL3 SPXYL4 SPXYL5 SSUC1 SSUC10
## 34 34 34 34 34 34 34 34 34 34
## SSUC11 SSUC12 SSUC2 SSUC3 SSUC4 SSUC5 SSUC6 SSUC7 SSUC8 SSUC9
## 34 34 34 34 34 34 34 34 34 34
## SUB1 SXYL1 SXYL10 SXYL11 SXYL12 SXYL13 SXYL2 SXYL3 SXYL4 SXYL5
## 34 34 34 34 34 34 34 34 34 34
## SXYL6 SXYL7 SXYL8 SXYL9
## 34 34 34 34
im_ev_plot_6 <- im_ev_sxyl_spxyl %>%
ggplot(aes(x = vir_gene_nonredundant, y = wgs_isolate_id)) +
geom_tile(aes(fill = presence_gene), color = "black") +
scale_fill_manual(labels = c("No", "Yes"), values = c("white", "#009999")) +
labs(y = "Isolate ID", x = "Gene ID",fill="Presence gene",title="Staphylococcus xylosus/pseudoxylosus") +
scale_y_discrete(limits = rev) +
theme(plot.title=element_text(face="italic"),axis.text.x=element_blank(),axis.title.x = element_blank())
im_ev_sco <- im_ev_long %>% filter(grepl("SCO",wgs_isolate_id))
im_ev_sco$wgs_isolate_id <- fct_reorder(im_ev_sco$wgs_isolate_id,im_ev_sco$wgs_id)
im_ev_sdev <- im_ev_long %>% filter(grepl("SDEV",wgs_isolate_id))
levels(im_ev_long$wgs_isolate_id)
## NULL
im_ev_sdev$wgs_isolate_id <- fct_reorder(im_ev_sdev$wgs_isolate_id,im_ev_sdev$wgs_id)
im_ev_seq <- im_ev_long %>% filter(grepl("SEQ",wgs_isolate_id))
im_ev_seq$wgs_isolate_id <- fct_reorder(im_ev_seq$wgs_isolate_id,im_ev_seq$wgs_id)
im_ev_other <- rbind(im_ev_sco,im_ev_sdev,im_ev_seq)
table(im_ev_long$wgs_isolate_id)
##
## MSC1 MSC2 MSC3 MSC4 MSC5 MSC6 SAU1 SAU2 SAU3 SCH1
## 34 34 34 34 34 34 34 34 34 34
## SCH10 SCH11 SCH12 SCH13 SCH14 SCH15 SCH16 SCH17 SCH18 SCH19
## 34 34 34 34 34 34 34 34 34 34
## SCH2 SCH20 SCH21 SCH3 SCH4 SCH5 SCH6 SCH7 SCH8 SCH9
## 34 34 34 34 34 34 34 34 34 34
## SCO1 SDEV1 SDEV2 SEQ1 SHAEM1 SHAEM10 SHAEM11 SHAEM12 SHAEM13 SHAEM14
## 34 34 34 34 34 34 34 34 34 34
## SHAEM15 SHAEM16 SHAEM17 SHAEM18 SHAEM19 SHAEM2 SHAEM3 SHAEM4 SHAEM5 SHAEM6
## 34 34 34 34 34 34 34 34 34 34
## SHAEM7 SHAEM8 SHAEM9 SPXYL1 SPXYL2 SPXYL3 SPXYL4 SPXYL5 SSUC1 SSUC10
## 34 34 34 34 34 34 34 34 34 34
## SSUC11 SSUC12 SSUC2 SSUC3 SSUC4 SSUC5 SSUC6 SSUC7 SSUC8 SSUC9
## 34 34 34 34 34 34 34 34 34 34
## SUB1 SXYL1 SXYL10 SXYL11 SXYL12 SXYL13 SXYL2 SXYL3 SXYL4 SXYL5
## 34 34 34 34 34 34 34 34 34 34
## SXYL6 SXYL7 SXYL8 SXYL9
## 34 34 34 34
im_ev_plot_7 <- im_ev_other %>%
ggplot(aes(x = vir_gene_nonredundant, y = wgs_isolate_id)) +
geom_tile(aes(fill = presence_gene), color = "black") +
scale_fill_manual(labels = c("No", "Yes"), values = c("white", "#009999")) +
labs(y = "Isolate ID", x = "Immune evasion",fill="Presence gene",title="Other") +
scale_y_discrete(limits = rev) +
theme(plot.title=element_text(face="italic"),axis.text.x = element_text(angle = 45, hjust = 1))
# Multipanel figure
im_ev_plot <- ggarrange(im_ev_plot_1 + rremove("xlab")+ rremove("ylab"),im_ev_plot_2 + rremove("xlab")+ rremove("ylab"),im_ev_plot_3 + rremove("xlab")+ rremove("ylab"),im_ev_plot_4 + rremove("xlab")+ rremove("ylab"),im_ev_plot_5 + rremove("xlab")+ rremove("ylab"),im_ev_plot_6 + rremove("xlab")+ rremove("ylab"),im_ev_plot_7 + rremove("xlab")+ rremove("ylab"), ncol = 1, nrow = 7, common.legend = TRUE,align ="v",labels = c("A", "B", "C","D","E","F","G"),heights = c(1.25,4.5,4.25,1.75,3,3.5,2.25))
annotate_figure(im_ev_plot,
left = text_grob("Isolate ID", color = "black", rot = 90, size = 12))
ggsave(plot = last_plot(),"./figures/im_ev.pdf",width = 20, height = 40, units = "cm")
ggsave(plot = last_plot(),"./figures/im_ev.png",width = 20, height = 40, units = "cm")
# ---- enterotoxin genes ----
enterotoxin_sau <- enterotoxin_long %>% filter(grepl("SAU",wgs_isolate_id))
enterotoxin_plot_1 <- enterotoxin_sau %>%
ggplot(aes(x = vir_gene_nonredundant, y = fct_reorder(enterotoxin_sau$wgs_isolate_id,enterotoxin_sau$wgs_id))) +
geom_tile(aes(fill = presence_gene), color = "black") +
scale_fill_manual(labels = c("No", "Yes"), values = c("white", "#009999")) +
labs(y = "Isolate ID", x = "Gene ID",fill="Presence gene",title="Staphylococcus aureus") +
scale_y_discrete(limits = rev) +
theme(plot.title=element_text(face="italic"),axis.text.x=element_blank(),axis.title.x = element_blank())
enterotoxin_sch <- enterotoxin_long %>% filter(grepl("SCH",wgs_isolate_id))
enterotoxin_plot_2 <- enterotoxin_sch %>%
ggplot(aes(x = vir_gene_nonredundant, y = fct_reorder(enterotoxin_sch$wgs_isolate_id,enterotoxin_sch$wgs_id))) +
geom_tile(aes(fill = presence_gene), color = "black") +
scale_fill_manual(labels = c("No", "Yes"), values = c("white", "#009999")) +
labs(y = "Isolate ID", x = "Gene ID",fill="Presence gene",title="Staphylococcus chromogenes") +
scale_y_discrete(limits = rev) +
theme(plot.title=element_text(face="italic"),axis.text.x=element_blank(),axis.title.x = element_blank())
enterotoxin_shaem <- enterotoxin_long %>% filter(grepl("SHAEM",wgs_isolate_id))
enterotoxin_plot_3 <- enterotoxin_shaem %>%
ggplot(aes(x = vir_gene_nonredundant, y = fct_reorder(enterotoxin_shaem$wgs_isolate_id,enterotoxin_shaem$wgs_id))) +
geom_tile(aes(fill = presence_gene), color = "black") +
scale_fill_manual(labels = c("No", "Yes"), values = c("white", "#009999")) +
labs(y = "Isolate ID", x = "Gene ID",fill="Presence gene",title="Staphylococcus haemolyticus") +
scale_y_discrete(limits = rev) +
theme(plot.title=element_text(face="italic"),axis.text.x=element_blank(),axis.title.x = element_blank())
enterotoxin_ssc <- enterotoxin_long %>% filter(grepl("MSC",wgs_isolate_id))
enterotoxin_plot_4 <- enterotoxin_ssc %>%
ggplot(aes(x = vir_gene_nonredundant, y = fct_reorder(enterotoxin_ssc$wgs_isolate_id,enterotoxin_ssc$wgs_id))) +
geom_tile(aes(fill = presence_gene), color = "black") +
scale_fill_manual(labels = c("No", "Yes"), values = c("white", "#009999")) +
labs(y = "Isolate ID", x = "Gene ID",fill="Presence gene",title="Mammaliicoccus sciuri") +
scale_y_discrete(limits = rev) +
theme(plot.title=element_text(face="italic"),axis.text.x=element_blank(),axis.title.x = element_blank())
enterotoxin_ssuc <- enterotoxin_long %>% filter(grepl("SSUC",wgs_isolate_id))
enterotoxin_plot_5 <- enterotoxin_ssuc %>%
ggplot(aes(x = vir_gene_nonredundant, y = fct_reorder(enterotoxin_ssuc$wgs_isolate_id,enterotoxin_ssuc$wgs_id))) +
geom_tile(aes(fill = presence_gene), color = "black") +
scale_fill_manual(labels = c("No", "Yes"), values = c("white", "#009999")) +
labs(y = "Isolate ID", x = "Gene ID",fill="Presence gene",title="Staphylococcus succinus") +
scale_y_discrete(limits = rev) +
theme(plot.title=element_text(face="italic"),axis.text.x=element_blank(),axis.title.x = element_blank())
enterotoxin_ssxyl <- enterotoxin_long %>% filter(grepl("SXYL",wgs_isolate_id))
enterotoxin_ssxyl$wgs_isolate_id <- fct_reorder(enterotoxin_ssxyl$wgs_isolate_id,enterotoxin_ssxyl$wgs_id)
enterotoxin_spxyl <- enterotoxin_long %>% filter(grepl("SPXYL",wgs_isolate_id))
levels(enterotoxin_long$wgs_isolate_id)
## NULL
enterotoxin_spxyl$wgs_isolate_id <- fct_reorder(enterotoxin_spxyl$wgs_isolate_id,enterotoxin_spxyl$wgs_id)
enterotoxin_sxyl_spxyl <- rbind(enterotoxin_ssxyl,enterotoxin_spxyl)
#enterotoxin_ssxyl$wgs_isolate_id <- fct_reorder(enterotoxin_ssxyl$wgs_isolate_id,enterotoxin_ssxyl$wgs_id)
table(enterotoxin_long$wgs_isolate_id)
##
## MSC1 MSC2 MSC3 MSC4 MSC5 MSC6 SAU1 SAU2 SAU3 SCH1
## 59 59 59 59 59 59 59 59 59 59
## SCH10 SCH11 SCH12 SCH13 SCH14 SCH15 SCH16 SCH17 SCH18 SCH19
## 59 59 59 59 59 59 59 59 59 59
## SCH2 SCH20 SCH21 SCH3 SCH4 SCH5 SCH6 SCH7 SCH8 SCH9
## 59 59 59 59 59 59 59 59 59 59
## SCO1 SDEV1 SDEV2 SEQ1 SHAEM1 SHAEM10 SHAEM11 SHAEM12 SHAEM13 SHAEM14
## 59 59 59 59 59 59 59 59 59 59
## SHAEM15 SHAEM16 SHAEM17 SHAEM18 SHAEM19 SHAEM2 SHAEM3 SHAEM4 SHAEM5 SHAEM6
## 59 59 59 59 59 59 59 59 59 59
## SHAEM7 SHAEM8 SHAEM9 SPXYL1 SPXYL2 SPXYL3 SPXYL4 SPXYL5 SSUC1 SSUC10
## 59 59 59 59 59 59 59 59 59 59
## SSUC11 SSUC12 SSUC2 SSUC3 SSUC4 SSUC5 SSUC6 SSUC7 SSUC8 SSUC9
## 59 59 59 59 59 59 59 59 59 59
## SUB1 SXYL1 SXYL10 SXYL11 SXYL12 SXYL13 SXYL2 SXYL3 SXYL4 SXYL5
## 59 59 59 59 59 59 59 59 59 59
## SXYL6 SXYL7 SXYL8 SXYL9
## 59 59 59 59
enterotoxin_plot_6 <- enterotoxin_sxyl_spxyl %>%
ggplot(aes(x = vir_gene_nonredundant, y = wgs_isolate_id)) +
geom_tile(aes(fill = presence_gene), color = "black") +
scale_fill_manual(labels = c("No", "Yes"), values = c("white", "#009999")) +
labs(y = "Isolate ID", x = "Gene ID",fill="Presence gene",title="Staphylococcus xylosus/pseudoxylosus") +
scale_y_discrete(limits = rev) +
theme(plot.title=element_text(face="italic"),axis.text.x=element_blank(),axis.title.x = element_blank())
enterotoxin_sco <- enterotoxin_long %>% filter(grepl("SCO",wgs_isolate_id))
enterotoxin_sco$wgs_isolate_id <- fct_reorder(enterotoxin_sco$wgs_isolate_id,enterotoxin_sco$wgs_id)
enterotoxin_sdev <- enterotoxin_long %>% filter(grepl("SDEV",wgs_isolate_id))
levels(enterotoxin_long$wgs_isolate_id)
## NULL
enterotoxin_sdev$wgs_isolate_id <- fct_reorder(enterotoxin_sdev$wgs_isolate_id,enterotoxin_sdev$wgs_id)
enterotoxin_seq <- enterotoxin_long %>% filter(grepl("SEQ",wgs_isolate_id))
enterotoxin_seq$wgs_isolate_id <- fct_reorder(enterotoxin_seq$wgs_isolate_id,enterotoxin_seq$wgs_id)
enterotoxin_other <- rbind(enterotoxin_sco,enterotoxin_sdev,enterotoxin_seq)
table(enterotoxin_long$wgs_isolate_id)
##
## MSC1 MSC2 MSC3 MSC4 MSC5 MSC6 SAU1 SAU2 SAU3 SCH1
## 59 59 59 59 59 59 59 59 59 59
## SCH10 SCH11 SCH12 SCH13 SCH14 SCH15 SCH16 SCH17 SCH18 SCH19
## 59 59 59 59 59 59 59 59 59 59
## SCH2 SCH20 SCH21 SCH3 SCH4 SCH5 SCH6 SCH7 SCH8 SCH9
## 59 59 59 59 59 59 59 59 59 59
## SCO1 SDEV1 SDEV2 SEQ1 SHAEM1 SHAEM10 SHAEM11 SHAEM12 SHAEM13 SHAEM14
## 59 59 59 59 59 59 59 59 59 59
## SHAEM15 SHAEM16 SHAEM17 SHAEM18 SHAEM19 SHAEM2 SHAEM3 SHAEM4 SHAEM5 SHAEM6
## 59 59 59 59 59 59 59 59 59 59
## SHAEM7 SHAEM8 SHAEM9 SPXYL1 SPXYL2 SPXYL3 SPXYL4 SPXYL5 SSUC1 SSUC10
## 59 59 59 59 59 59 59 59 59 59
## SSUC11 SSUC12 SSUC2 SSUC3 SSUC4 SSUC5 SSUC6 SSUC7 SSUC8 SSUC9
## 59 59 59 59 59 59 59 59 59 59
## SUB1 SXYL1 SXYL10 SXYL11 SXYL12 SXYL13 SXYL2 SXYL3 SXYL4 SXYL5
## 59 59 59 59 59 59 59 59 59 59
## SXYL6 SXYL7 SXYL8 SXYL9
## 59 59 59 59
enterotoxin_plot_7 <- enterotoxin_other %>%
ggplot(aes(x = vir_gene_nonredundant, y = wgs_isolate_id)) +
geom_tile(aes(fill = presence_gene), color = "black") +
scale_fill_manual(labels = c("No", "Yes"), values = c("white", "#009999")) +
labs(y = "Isolate ID", x = "Enterotoxins & exotoxins",fill="Presence gene",title="Other") +
scale_y_discrete(limits = rev) +
theme(plot.title=element_text(face="italic"),axis.text.x = element_text(angle = 45, hjust = 1))
# Multipanel figure
enterotoxin_plot <- ggarrange(enterotoxin_plot_1 + rremove("xlab")+ rremove("ylab"),enterotoxin_plot_2 + rremove("xlab")+ rremove("ylab"),enterotoxin_plot_3 + rremove("xlab")+ rremove("ylab"),enterotoxin_plot_4 + rremove("xlab")+ rremove("ylab"),enterotoxin_plot_5 + rremove("xlab")+ rremove("ylab"),enterotoxin_plot_6 + rremove("xlab")+ rremove("ylab"),enterotoxin_plot_7 + rremove("ylab"), ncol = 1, nrow = 7, common.legend = TRUE,align ="v",labels = c("A", "B", "C","D","E","F","G"),heights = c(1.25,4.5,4.25,1.75,3,3.5,2.25))
annotate_figure(enterotoxin_plot,
left = text_grob("Isolate ID", color = "black", rot = 90, size = 12))
ggsave(plot = last_plot(),"./figures/enterotoxin.pdf",width = 50, height = 40, units = "cm")
ggsave(plot = last_plot(),"./figures/enterotoxin.png",width = 50, height = 40, units = "cm")
# ---- toxin genes ----
toxin_sau <- toxin_long %>% filter(grepl("SAU",wgs_isolate_id))
toxin_plot_1 <- toxin_sau %>%
ggplot(aes(x = vir_gene_nonredundant, y = fct_reorder(toxin_sau$wgs_isolate_id,toxin_sau$wgs_id))) +
geom_tile(aes(fill = presence_gene), color = "black") +
scale_fill_manual(labels = c("No", "Yes"), values = c("white", "#009999")) +
labs(y = "Isolate ID", x = "Gene ID",fill="Presence gene",title="Staphylococcus aureus") +
scale_y_discrete(limits = rev) +
theme(plot.title=element_text(face="italic"),axis.text.x=element_blank(),axis.title.x = element_blank())
toxin_sch <- toxin_long %>% filter(grepl("SCH",wgs_isolate_id))
toxin_plot_2 <- toxin_sch %>%
ggplot(aes(x = vir_gene_nonredundant, y = fct_reorder(toxin_sch$wgs_isolate_id,toxin_sch$wgs_id))) +
geom_tile(aes(fill = presence_gene), color = "black") +
scale_fill_manual(labels = c("No", "Yes"), values = c("white", "#009999")) +
labs(y = "Isolate ID", x = "Gene ID",fill="Presence gene",title="Staphylococcus chromogenes") +
scale_y_discrete(limits = rev) +
theme(plot.title=element_text(face="italic"),axis.text.x=element_blank(),axis.title.x = element_blank())
toxin_shaem <- toxin_long %>% filter(grepl("SHAEM",wgs_isolate_id))
toxin_plot_3 <- toxin_shaem %>%
ggplot(aes(x = vir_gene_nonredundant, y = fct_reorder(toxin_shaem$wgs_isolate_id,toxin_shaem$wgs_id))) +
geom_tile(aes(fill = presence_gene), color = "black") +
scale_fill_manual(labels = c("No", "Yes"), values = c("white", "#009999")) +
labs(y = "Isolate ID", x = "Gene ID",fill="Presence gene",title="Staphylococcus haemolyticus") +
scale_y_discrete(limits = rev) +
theme(plot.title=element_text(face="italic"),axis.text.x=element_blank(),axis.title.x = element_blank())
toxin_ssc <- toxin_long %>% filter(grepl("MSC",wgs_isolate_id))
toxin_plot_4 <- toxin_ssc %>%
ggplot(aes(x = vir_gene_nonredundant, y = fct_reorder(toxin_ssc$wgs_isolate_id,toxin_ssc$wgs_id))) +
geom_tile(aes(fill = presence_gene), color = "black") +
scale_fill_manual(labels = c("No", "Yes"), values = c("white", "#009999")) +
labs(y = "Isolate ID", x = "Gene ID",fill="Presence gene",title="Mammaliicoccus sciuri") +
scale_y_discrete(limits = rev) +
theme(plot.title=element_text(face="italic"),axis.text.x=element_blank(),axis.title.x = element_blank())
toxin_ssuc <- toxin_long %>% filter(grepl("SSUC",wgs_isolate_id))
toxin_plot_5 <- toxin_ssuc %>%
ggplot(aes(x = vir_gene_nonredundant, y = fct_reorder(toxin_ssuc$wgs_isolate_id,toxin_ssuc$wgs_id))) +
geom_tile(aes(fill = presence_gene), color = "black") +
scale_fill_manual(labels = c("No", "Yes"), values = c("white", "#009999")) +
labs(y = "Isolate ID", x = "Gene ID",fill="Presence gene",title="Staphylococcus succinus") +
scale_y_discrete(limits = rev) +
theme(plot.title=element_text(face="italic"),axis.text.x=element_blank(),axis.title.x = element_blank())
toxin_ssxyl <- toxin_long %>% filter(grepl("SXYL",wgs_isolate_id))
toxin_ssxyl$wgs_isolate_id <- fct_reorder(toxin_ssxyl$wgs_isolate_id,toxin_ssxyl$wgs_id)
toxin_spxyl <- toxin_long %>% filter(grepl("SPXYL",wgs_isolate_id))
levels(toxin_long$wgs_isolate_id)
## NULL
toxin_spxyl$wgs_isolate_id <- fct_reorder(toxin_spxyl$wgs_isolate_id,toxin_spxyl$wgs_id)
toxin_sxyl_spxyl <- rbind(toxin_ssxyl,toxin_spxyl)
#toxin_ssxyl$wgs_isolate_id <- fct_reorder(toxin_ssxyl$wgs_isolate_id,toxin_ssxyl$wgs_id)
table(toxin_long$wgs_isolate_id)
##
## MSC1 MSC2 MSC3 MSC4 MSC5 MSC6 SAU1 SAU2 SAU3 SCH1
## 30 30 30 30 30 30 30 30 30 30
## SCH10 SCH11 SCH12 SCH13 SCH14 SCH15 SCH16 SCH17 SCH18 SCH19
## 30 30 30 30 30 30 30 30 30 30
## SCH2 SCH20 SCH21 SCH3 SCH4 SCH5 SCH6 SCH7 SCH8 SCH9
## 30 30 30 30 30 30 30 30 30 30
## SCO1 SDEV1 SDEV2 SEQ1 SHAEM1 SHAEM10 SHAEM11 SHAEM12 SHAEM13 SHAEM14
## 30 30 30 30 30 30 30 30 30 30
## SHAEM15 SHAEM16 SHAEM17 SHAEM18 SHAEM19 SHAEM2 SHAEM3 SHAEM4 SHAEM5 SHAEM6
## 30 30 30 30 30 30 30 30 30 30
## SHAEM7 SHAEM8 SHAEM9 SPXYL1 SPXYL2 SPXYL3 SPXYL4 SPXYL5 SSUC1 SSUC10
## 30 30 30 30 30 30 30 30 30 30
## SSUC11 SSUC12 SSUC2 SSUC3 SSUC4 SSUC5 SSUC6 SSUC7 SSUC8 SSUC9
## 30 30 30 30 30 30 30 30 30 30
## SUB1 SXYL1 SXYL10 SXYL11 SXYL12 SXYL13 SXYL2 SXYL3 SXYL4 SXYL5
## 30 30 30 30 30 30 30 30 30 30
## SXYL6 SXYL7 SXYL8 SXYL9
## 30 30 30 30
toxin_plot_6 <- toxin_sxyl_spxyl %>%
ggplot(aes(x = vir_gene_nonredundant, y = wgs_isolate_id)) +
geom_tile(aes(fill = presence_gene), color = "black") +
scale_fill_manual(labels = c("No", "Yes"), values = c("white", "#009999")) +
labs(y = "Isolate ID", x = "Gene ID",fill="Presence gene",title="Staphylococcus xylosus/pseudoxylosus") +
scale_y_discrete(limits = rev) +
theme(plot.title=element_text(face="italic"),axis.text.x=element_blank(),axis.title.x = element_blank())
toxin_sco <- toxin_long %>% filter(grepl("SCO",wgs_isolate_id))
toxin_sco$wgs_isolate_id <- fct_reorder(toxin_sco$wgs_isolate_id,toxin_sco$wgs_id)
toxin_sdev <- toxin_long %>% filter(grepl("SDEV",wgs_isolate_id))
levels(toxin_long$wgs_isolate_id)
## NULL
toxin_sdev$wgs_isolate_id <- fct_reorder(toxin_sdev$wgs_isolate_id,toxin_sdev$wgs_id)
toxin_seq <- toxin_long %>% filter(grepl("SEQ",wgs_isolate_id))
toxin_seq$wgs_isolate_id <- fct_reorder(toxin_seq$wgs_isolate_id,toxin_seq$wgs_id)
toxin_other <- rbind(toxin_sco,toxin_sdev,toxin_seq)
table(toxin_long$wgs_isolate_id)
##
## MSC1 MSC2 MSC3 MSC4 MSC5 MSC6 SAU1 SAU2 SAU3 SCH1
## 30 30 30 30 30 30 30 30 30 30
## SCH10 SCH11 SCH12 SCH13 SCH14 SCH15 SCH16 SCH17 SCH18 SCH19
## 30 30 30 30 30 30 30 30 30 30
## SCH2 SCH20 SCH21 SCH3 SCH4 SCH5 SCH6 SCH7 SCH8 SCH9
## 30 30 30 30 30 30 30 30 30 30
## SCO1 SDEV1 SDEV2 SEQ1 SHAEM1 SHAEM10 SHAEM11 SHAEM12 SHAEM13 SHAEM14
## 30 30 30 30 30 30 30 30 30 30
## SHAEM15 SHAEM16 SHAEM17 SHAEM18 SHAEM19 SHAEM2 SHAEM3 SHAEM4 SHAEM5 SHAEM6
## 30 30 30 30 30 30 30 30 30 30
## SHAEM7 SHAEM8 SHAEM9 SPXYL1 SPXYL2 SPXYL3 SPXYL4 SPXYL5 SSUC1 SSUC10
## 30 30 30 30 30 30 30 30 30 30
## SSUC11 SSUC12 SSUC2 SSUC3 SSUC4 SSUC5 SSUC6 SSUC7 SSUC8 SSUC9
## 30 30 30 30 30 30 30 30 30 30
## SUB1 SXYL1 SXYL10 SXYL11 SXYL12 SXYL13 SXYL2 SXYL3 SXYL4 SXYL5
## 30 30 30 30 30 30 30 30 30 30
## SXYL6 SXYL7 SXYL8 SXYL9
## 30 30 30 30
toxin_plot_7 <- toxin_other %>%
ggplot(aes(x = vir_gene_nonredundant, y = wgs_isolate_id)) +
geom_tile(aes(fill = presence_gene), color = "black") +
scale_fill_manual(labels = c("No", "Yes"), values = c("white", "#009999")) +
labs(y = "Isolate ID", x = "Other toxins",fill="Presence gene",title="Other") +
scale_y_discrete(limits = rev) +
theme(plot.title=element_text(face="italic"),axis.text.x = element_text(angle = 45, hjust = 1))
# Multipanel figure
toxin_plot <- ggarrange(toxin_plot_1 + rremove("xlab")+ rremove("ylab"),toxin_plot_2 + rremove("xlab")+ rremove("ylab"),toxin_plot_3 + rremove("xlab")+ rremove("ylab"),toxin_plot_4 + rremove("xlab")+ rremove("ylab"),toxin_plot_5 + rremove("xlab")+ rremove("ylab"),toxin_plot_6 + rremove("xlab")+ rremove("ylab"),toxin_plot_7 + rremove("ylab"), ncol = 1, nrow = 7, common.legend = TRUE,align ="v",labels = c("A", "B", "C","D","E","F","G"),heights = c(1.25,4.5,4.25,1.75,3,3.5,2.25))
annotate_figure(toxin_plot,
left = text_grob("Isolate ID", color = "black", rot = 90, size = 12))
ggsave(plot = last_plot(),"./figures/toxin.pdf",width = 20, height = 40, units = "cm")
ggsave(plot = last_plot(),"./figures/toxin.png",width = 20, height = 40, units = "cm")
enterotoxin_toxin_plot <- ggarrange(
enterotoxin_plot_1 + rremove("xlab") + rremove("ylab"),
toxin_plot_1 + rremove("xlab") + rremove("ylab") ,
enterotoxin_plot_2 + rremove("xlab") + rremove("ylab"),
toxin_plot_2 + rremove("xlab") + rremove("ylab") ,
enterotoxin_plot_3 + rremove("xlab") + rremove("ylab"),
toxin_plot_3 + rremove("xlab") + rremove("ylab") ,
enterotoxin_plot_4 + rremove("xlab") + rremove("ylab"),
toxin_plot_4 + rremove("xlab") + rremove("ylab") ,
enterotoxin_plot_5 + rremove("xlab") + rremove("ylab"),
toxin_plot_5 + rremove("xlab") + rremove("ylab") ,
enterotoxin_plot_6 + rremove("xlab") + rremove("ylab"),
toxin_plot_6 + rremove("xlab") + rremove("ylab") ,
enterotoxin_plot_7 + rremove("ylab"),
toxin_plot_7 + rremove("ylab") ,
ncol = 2, nrow = 7, common.legend = TRUE, align = "v",
labels = c("A1", "A2", "B1", "B2", "C1", "C2", "D1", "D2", "E1", "E2", "F1", "F2", "G1", "G2"),
heights = c(1.25,4.5, 4.25, 1.75,3,3.5, 2.25))
annotate_figure(enterotoxin_toxin_plot,
left = text_grob("Isolate ID", color = "black", rot = 90, size = 12))
ggsave(plot = last_plot(),"./figures/figure_10.pdf",width = 50, height = 40, units = "cm",dpi=600)
ggsave(plot = last_plot(),"./figures/figure_10.png",width = 50, height = 40, units = "cm",dpi=600)
ggsave(plot = last_plot(),"./figures/figure_10.jpeg",width = 50, height = 40, units = "cm",dpi=600)
# Presence of AMR related genes
amr_long$sau <- ifelse(amr_long$wgs_species_3 == "SAU", 1, 0)
amr_long <- amr_long %>% filter(wgs_species_3!="SUB")
amr_long_summary <- amr_long %>% group_by(gene_abbreviation,wgs_species_3) %>% summarise(n=max(presence)) %>% filter(n==1) %>% filter(wgs_species_3!="SUB")
## `summarise()` has grouped output by 'gene_abbreviation'. You can override using
## the `.groups` argument.
amr_long_summary %>% ungroup() %>% group_by(wgs_species_3) %>% summarise(n_genes=sum(n))
## # A tibble: 10 × 2
## wgs_species_3 n_genes
## <chr> <dbl>
## 1 MSC 4
## 2 SAU 15
## 3 SCH 1
## 4 SCO 6
## 5 SDEV 3
## 6 SEQ 2
## 7 SHAEM 4
## 8 SPXYL 6
## 9 SSUC 1
## 10 SXYL 4
table1(~presence_gene|gene_abbreviation,data=amr_long)
## Warning in .table1.internal(x = x, labels = labels, groupspan = groupspan, :
## Table has 29 columns. Are you sure this is what you want?
AAC3 (N=83) |
ANT9 (N=83) |
APH3-PRIME (N=83) |
ARLR (N=83) |
ARLS (N=83) |
BLAZ (N=83) |
DHAP (N=83) |
ERM (N=83) |
FOSB (N=83) |
FOSD (N=83) |
FUSF (N=83) |
LMRS (N=83) |
LNUA (N=83) |
MECA (N=83) |
MECC (N=83) |
MECI (N=83) |
MEPA (N=83) |
MEPB (N=83) |
MEPR (N=83) |
MGRA (N=83) |
MPHC (N=83) |
MSRA (N=83) |
NORA (N=83) |
NORB (N=83) |
RLMH (N=83) |
SALA (N=83) |
TET38 (N=83) |
TETK (N=83) |
Overall (N=2324) |
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
presence_gene | |||||||||||||||||||||||||||||
No | 80 (96.4%) | 82 (98.8%) | 41 (49.4%) | 80 (96.4%) | 80 (96.4%) | 78 (94.0%) | 80 (96.4%) | 78 (94.0%) | 81 (97.6%) | 81 (97.6%) | 82 (98.8%) | 80 (96.4%) | 77 (92.8%) | 77 (92.8%) | 78 (94.0%) | 78 (94.0%) | 80 (96.4%) | 80 (96.4%) | 80 (96.4%) | 59 (71.1%) | 69 (83.1%) | 82 (98.8%) | 80 (96.4%) | 80 (96.4%) | 39 (47.0%) | 77 (92.8%) | 80 (96.4%) | 82 (98.8%) | 2121 (91.3%) |
Yes | 3 (3.6%) | 1 (1.2%) | 42 (50.6%) | 3 (3.6%) | 3 (3.6%) | 5 (6.0%) | 3 (3.6%) | 5 (6.0%) | 2 (2.4%) | 2 (2.4%) | 1 (1.2%) | 3 (3.6%) | 6 (7.2%) | 6 (7.2%) | 5 (6.0%) | 5 (6.0%) | 3 (3.6%) | 3 (3.6%) | 3 (3.6%) | 24 (28.9%) | 14 (16.9%) | 1 (1.2%) | 3 (3.6%) | 3 (3.6%) | 44 (53.0%) | 6 (7.2%) | 3 (3.6%) | 1 (1.2%) | 203 (8.7%) |
table1(~presence_gene|wgs_species_3:gene_abbreviation,data=amr_long)
## Warning in .table1.internal(x = x, labels = labels, groupspan = groupspan, :
## Table has 308 columns. Are you sure this is what you want?
MSC |
SAU |
SCH |
SCO |
SDEV |
SEQ |
SHAEM |
SPXYL |
SSUC |
SXYL |
Overall |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AAC3 (N=6) |
ANT9 (N=6) |
APH3-PRIME (N=6) |
ARLR (N=6) |
ARLS (N=6) |
BLAZ (N=6) |
DHAP (N=6) |
ERM (N=6) |
FOSB (N=6) |
FOSD (N=6) |
FUSF (N=6) |
LMRS (N=6) |
LNUA (N=6) |
MECA (N=6) |
MECC (N=6) |
MECI (N=6) |
MEPA (N=6) |
MEPB (N=6) |
MEPR (N=6) |
MGRA (N=6) |
MPHC (N=6) |
MSRA (N=6) |
NORA (N=6) |
NORB (N=6) |
RLMH (N=6) |
SALA (N=6) |
TET38 (N=6) |
TETK (N=6) |
AAC3 (N=3) |
ANT9 (N=3) |
APH3-PRIME (N=3) |
ARLR (N=3) |
ARLS (N=3) |
BLAZ (N=3) |
DHAP (N=3) |
ERM (N=3) |
FOSB (N=3) |
FOSD (N=3) |
FUSF (N=3) |
LMRS (N=3) |
LNUA (N=3) |
MECA (N=3) |
MECC (N=3) |
MECI (N=3) |
MEPA (N=3) |
MEPB (N=3) |
MEPR (N=3) |
MGRA (N=3) |
MPHC (N=3) |
MSRA (N=3) |
NORA (N=3) |
NORB (N=3) |
RLMH (N=3) |
SALA (N=3) |
TET38 (N=3) |
TETK (N=3) |
AAC3 (N=21) |
ANT9 (N=21) |
APH3-PRIME (N=21) |
ARLR (N=21) |
ARLS (N=21) |
BLAZ (N=21) |
DHAP (N=21) |
ERM (N=21) |
FOSB (N=21) |
FOSD (N=21) |
FUSF (N=21) |
LMRS (N=21) |
LNUA (N=21) |
MECA (N=21) |
MECC (N=21) |
MECI (N=21) |
MEPA (N=21) |
MEPB (N=21) |
MEPR (N=21) |
MGRA (N=21) |
MPHC (N=21) |
MSRA (N=21) |
NORA (N=21) |
NORB (N=21) |
RLMH (N=21) |
SALA (N=21) |
TET38 (N=21) |
TETK (N=21) |
AAC3 (N=1) |
ANT9 (N=1) |
APH3-PRIME (N=1) |
ARLR (N=1) |
ARLS (N=1) |
BLAZ (N=1) |
DHAP (N=1) |
ERM (N=1) |
FOSB (N=1) |
FOSD (N=1) |
FUSF (N=1) |
LMRS (N=1) |
LNUA (N=1) |
MECA (N=1) |
MECC (N=1) |
MECI (N=1) |
MEPA (N=1) |
MEPB (N=1) |
MEPR (N=1) |
MGRA (N=1) |
MPHC (N=1) |
MSRA (N=1) |
NORA (N=1) |
NORB (N=1) |
RLMH (N=1) |
SALA (N=1) |
TET38 (N=1) |
TETK (N=1) |
AAC3 (N=2) |
ANT9 (N=2) |
APH3-PRIME (N=2) |
ARLR (N=2) |
ARLS (N=2) |
BLAZ (N=2) |
DHAP (N=2) |
ERM (N=2) |
FOSB (N=2) |
FOSD (N=2) |
FUSF (N=2) |
LMRS (N=2) |
LNUA (N=2) |
MECA (N=2) |
MECC (N=2) |
MECI (N=2) |
MEPA (N=2) |
MEPB (N=2) |
MEPR (N=2) |
MGRA (N=2) |
MPHC (N=2) |
MSRA (N=2) |
NORA (N=2) |
NORB (N=2) |
RLMH (N=2) |
SALA (N=2) |
TET38 (N=2) |
TETK (N=2) |
AAC3 (N=1) |
ANT9 (N=1) |
APH3-PRIME (N=1) |
ARLR (N=1) |
ARLS (N=1) |
BLAZ (N=1) |
DHAP (N=1) |
ERM (N=1) |
FOSB (N=1) |
FOSD (N=1) |
FUSF (N=1) |
LMRS (N=1) |
LNUA (N=1) |
MECA (N=1) |
MECC (N=1) |
MECI (N=1) |
MEPA (N=1) |
MEPB (N=1) |
MEPR (N=1) |
MGRA (N=1) |
MPHC (N=1) |
MSRA (N=1) |
NORA (N=1) |
NORB (N=1) |
RLMH (N=1) |
SALA (N=1) |
TET38 (N=1) |
TETK (N=1) |
AAC3 (N=19) |
ANT9 (N=19) |
APH3-PRIME (N=19) |
ARLR (N=19) |
ARLS (N=19) |
BLAZ (N=19) |
DHAP (N=19) |
ERM (N=19) |
FOSB (N=19) |
FOSD (N=19) |
FUSF (N=19) |
LMRS (N=19) |
LNUA (N=19) |
MECA (N=19) |
MECC (N=19) |
MECI (N=19) |
MEPA (N=19) |
MEPB (N=19) |
MEPR (N=19) |
MGRA (N=19) |
MPHC (N=19) |
MSRA (N=19) |
NORA (N=19) |
NORB (N=19) |
RLMH (N=19) |
SALA (N=19) |
TET38 (N=19) |
TETK (N=19) |
AAC3 (N=5) |
ANT9 (N=5) |
APH3-PRIME (N=5) |
ARLR (N=5) |
ARLS (N=5) |
BLAZ (N=5) |
DHAP (N=5) |
ERM (N=5) |
FOSB (N=5) |
FOSD (N=5) |
FUSF (N=5) |
LMRS (N=5) |
LNUA (N=5) |
MECA (N=5) |
MECC (N=5) |
MECI (N=5) |
MEPA (N=5) |
MEPB (N=5) |
MEPR (N=5) |
MGRA (N=5) |
MPHC (N=5) |
MSRA (N=5) |
NORA (N=5) |
NORB (N=5) |
RLMH (N=5) |
SALA (N=5) |
TET38 (N=5) |
TETK (N=5) |
AAC3 (N=12) |
ANT9 (N=12) |
APH3-PRIME (N=12) |
ARLR (N=12) |
ARLS (N=12) |
BLAZ (N=12) |
DHAP (N=12) |
ERM (N=12) |
FOSB (N=12) |
FOSD (N=12) |
FUSF (N=12) |
LMRS (N=12) |
LNUA (N=12) |
MECA (N=12) |
MECC (N=12) |
MECI (N=12) |
MEPA (N=12) |
MEPB (N=12) |
MEPR (N=12) |
MGRA (N=12) |
MPHC (N=12) |
MSRA (N=12) |
NORA (N=12) |
NORB (N=12) |
RLMH (N=12) |
SALA (N=12) |
TET38 (N=12) |
TETK (N=12) |
AAC3 (N=13) |
ANT9 (N=13) |
APH3-PRIME (N=13) |
ARLR (N=13) |
ARLS (N=13) |
BLAZ (N=13) |
DHAP (N=13) |
ERM (N=13) |
FOSB (N=13) |
FOSD (N=13) |
FUSF (N=13) |
LMRS (N=13) |
LNUA (N=13) |
MECA (N=13) |
MECC (N=13) |
MECI (N=13) |
MEPA (N=13) |
MEPB (N=13) |
MEPR (N=13) |
MGRA (N=13) |
MPHC (N=13) |
MSRA (N=13) |
NORA (N=13) |
NORB (N=13) |
RLMH (N=13) |
SALA (N=13) |
TET38 (N=13) |
TETK (N=13) |
AAC3 (N=83) |
ANT9 (N=83) |
APH3-PRIME (N=83) |
ARLR (N=83) |
ARLS (N=83) |
BLAZ (N=83) |
DHAP (N=83) |
ERM (N=83) |
FOSB (N=83) |
FOSD (N=83) |
FUSF (N=83) |
LMRS (N=83) |
LNUA (N=83) |
MECA (N=83) |
MECC (N=83) |
MECI (N=83) |
MEPA (N=83) |
MEPB (N=83) |
MEPR (N=83) |
MGRA (N=83) |
MPHC (N=83) |
MSRA (N=83) |
NORA (N=83) |
NORB (N=83) |
RLMH (N=83) |
SALA (N=83) |
TET38 (N=83) |
TETK (N=83) |
|
presence_gene | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
No | 6 (100%) | 6 (100%) | 6 (100%) | 6 (100%) | 6 (100%) | 6 (100%) | 6 (100%) | 6 (100%) | 6 (100%) | 5 (83.3%) | 6 (100%) | 6 (100%) | 4 (66.7%) | 0 (0%) | 6 (100%) | 6 (100%) | 6 (100%) | 6 (100%) | 6 (100%) | 6 (100%) | 6 (100%) | 6 (100%) | 6 (100%) | 6 (100%) | 6 (100%) | 0 (0%) | 6 (100%) | 6 (100%) | 0 (0%) | 3 (100%) | 0 (0%) | 0 (0%) | 0 (0%) | 3 (100%) | 0 (0%) | 3 (100%) | 2 (66.7%) | 3 (100%) | 3 (100%) | 0 (0%) | 3 (100%) | 3 (100%) | 3 (100%) | 3 (100%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 3 (100%) | 3 (100%) | 0 (0%) | 0 (0%) | 0 (0%) | 3 (100%) | 0 (0%) | 3 (100%) | 21 (100%) | 21 (100%) | 21 (100%) | 21 (100%) | 21 (100%) | 21 (100%) | 21 (100%) | 21 (100%) | 21 (100%) | 21 (100%) | 21 (100%) | 21 (100%) | 21 (100%) | 21 (100%) | 21 (100%) | 21 (100%) | 21 (100%) | 21 (100%) | 21 (100%) | 21 (100%) | 21 (100%) | 21 (100%) | 21 (100%) | 21 (100%) | 1 (4.8%) | 21 (100%) | 21 (100%) | 21 (100%) | 1 (100%) | 0 (0%) | 1 (100%) | 1 (100%) | 1 (100%) | 1 (100%) | 1 (100%) | 1 (100%) | 1 (100%) | 1 (100%) | 0 (0%) | 1 (100%) | 0 (0%) | 1 (100%) | 1 (100%) | 1 (100%) | 1 (100%) | 1 (100%) | 1 (100%) | 1 (100%) | 0 (0%) | 0 (0%) | 1 (100%) | 1 (100%) | 1 (100%) | 1 (100%) | 1 (100%) | 0 (0%) | 2 (100%) | 2 (100%) | 0 (0%) | 2 (100%) | 2 (100%) | 2 (100%) | 2 (100%) | 2 (100%) | 2 (100%) | 2 (100%) | 2 (100%) | 2 (100%) | 2 (100%) | 2 (100%) | 2 (100%) | 2 (100%) | 2 (100%) | 2 (100%) | 2 (100%) | 0 (0%) | 2 (100%) | 2 (100%) | 2 (100%) | 2 (100%) | 0 (0%) | 2 (100%) | 2 (100%) | 2 (100%) | 1 (100%) | 1 (100%) | 0 (0%) | 1 (100%) | 1 (100%) | 1 (100%) | 1 (100%) | 1 (100%) | 1 (100%) | 1 (100%) | 1 (100%) | 1 (100%) | 1 (100%) | 1 (100%) | 1 (100%) | 1 (100%) | 1 (100%) | 1 (100%) | 1 (100%) | 1 (100%) | 0 (0%) | 1 (100%) | 1 (100%) | 1 (100%) | 1 (100%) | 1 (100%) | 1 (100%) | 1 (100%) | 19 (100%) | 19 (100%) | 0 (0%) | 19 (100%) | 19 (100%) | 19 (100%) | 19 (100%) | 19 (100%) | 19 (100%) | 19 (100%) | 19 (100%) | 19 (100%) | 16 (84.2%) | 19 (100%) | 19 (100%) | 19 (100%) | 19 (100%) | 19 (100%) | 19 (100%) | 0 (0%) | 19 (100%) | 19 (100%) | 19 (100%) | 19 (100%) | 0 (0%) | 19 (100%) | 19 (100%) | 19 (100%) | 5 (100%) | 5 (100%) | 5 (100%) | 5 (100%) | 5 (100%) | 0 (0%) | 5 (100%) | 1 (20.0%) | 4 (80.0%) | 5 (100%) | 5 (100%) | 5 (100%) | 5 (100%) | 5 (100%) | 0 (0%) | 0 (0%) | 5 (100%) | 5 (100%) | 5 (100%) | 5 (100%) | 0 (0%) | 5 (100%) | 5 (100%) | 5 (100%) | 5 (100%) | 5 (100%) | 5 (100%) | 5 (100%) | 12 (100%) | 12 (100%) | 0 (0%) | 12 (100%) | 12 (100%) | 12 (100%) | 12 (100%) | 12 (100%) | 12 (100%) | 12 (100%) | 12 (100%) | 12 (100%) | 12 (100%) | 12 (100%) | 12 (100%) | 12 (100%) | 12 (100%) | 12 (100%) | 12 (100%) | 12 (100%) | 12 (100%) | 12 (100%) | 12 (100%) | 12 (100%) | 12 (100%) | 12 (100%) | 12 (100%) | 12 (100%) | 13 (100%) | 13 (100%) | 8 (61.5%) | 13 (100%) | 13 (100%) | 13 (100%) | 13 (100%) | 12 (92.3%) | 13 (100%) | 12 (92.3%) | 13 (100%) | 13 (100%) | 13 (100%) | 13 (100%) | 13 (100%) | 13 (100%) | 13 (100%) | 13 (100%) | 13 (100%) | 13 (100%) | 6 (46.2%) | 13 (100%) | 13 (100%) | 13 (100%) | 13 (100%) | 13 (100%) | 13 (100%) | 13 (100%) | 80 (96.4%) | 82 (98.8%) | 41 (49.4%) | 80 (96.4%) | 80 (96.4%) | 78 (94.0%) | 80 (96.4%) | 78 (94.0%) | 81 (97.6%) | 81 (97.6%) | 82 (98.8%) | 80 (96.4%) | 77 (92.8%) | 77 (92.8%) | 78 (94.0%) | 78 (94.0%) | 80 (96.4%) | 80 (96.4%) | 80 (96.4%) | 59 (71.1%) | 69 (83.1%) | 82 (98.8%) | 80 (96.4%) | 80 (96.4%) | 39 (47.0%) | 77 (92.8%) | 80 (96.4%) | 82 (98.8%) |
Yes | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 (16.7%) | 0 (0%) | 0 (0%) | 2 (33.3%) | 6 (100%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 6 (100%) | 0 (0%) | 0 (0%) | 3 (100%) | 0 (0%) | 3 (100%) | 3 (100%) | 3 (100%) | 0 (0%) | 3 (100%) | 0 (0%) | 1 (33.3%) | 0 (0%) | 0 (0%) | 3 (100%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 3 (100%) | 3 (100%) | 3 (100%) | 3 (100%) | 0 (0%) | 0 (0%) | 3 (100%) | 3 (100%) | 3 (100%) | 0 (0%) | 3 (100%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 20 (95.2%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 (100%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 (100%) | 0 (0%) | 1 (100%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 (100%) | 1 (100%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 (100%) | 0 (0%) | 0 (0%) | 2 (100%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 2 (100%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 2 (100%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 (100%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 (100%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 19 (100%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 3 (15.8%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 19 (100%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 19 (100%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 5 (100%) | 0 (0%) | 4 (80.0%) | 1 (20.0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 5 (100%) | 5 (100%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 5 (100%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 12 (100%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 5 (38.5%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 (7.7%) | 0 (0%) | 1 (7.7%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 7 (53.8%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 3 (3.6%) | 1 (1.2%) | 42 (50.6%) | 3 (3.6%) | 3 (3.6%) | 5 (6.0%) | 3 (3.6%) | 5 (6.0%) | 2 (2.4%) | 2 (2.4%) | 1 (1.2%) | 3 (3.6%) | 6 (7.2%) | 6 (7.2%) | 5 (6.0%) | 5 (6.0%) | 3 (3.6%) | 3 (3.6%) | 3 (3.6%) | 24 (28.9%) | 14 (16.9%) | 1 (1.2%) | 3 (3.6%) | 3 (3.6%) | 44 (53.0%) | 6 (7.2%) | 3 (3.6%) | 1 (1.2%) |
# Aminoglycosides
table1(~presence_gene_type_isolate|wgs_species_3,data=amr_aminoglycosides_isolate)
MSC (N=6) |
SAU (N=3) |
SCH (N=21) |
SCO (N=1) |
SDEV (N=2) |
SEQ (N=1) |
SHAEM (N=19) |
SPXYL (N=5) |
SSUC (N=12) |
SUB (N=1) |
SXYL (N=13) |
Overall (N=84) |
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
presence_gene_type_isolate | ||||||||||||
0 | 6 (100%) | 0 (0%) | 21 (100%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 5 (100%) | 0 (0%) | 1 (100%) | 8 (61.5%) | 41 (48.8%) |
1 | 0 (0%) | 3 (100%) | 0 (0%) | 1 (100%) | 2 (100%) | 1 (100%) | 19 (100%) | 0 (0%) | 12 (100%) | 0 (0%) | 5 (38.5%) | 43 (51.2%) |
# Betalactams
table1(~presence_gene_type_isolate|wgs_species_3,data=amr_betalactams_isolate)
MSC (N=6) |
SAU (N=3) |
SCH (N=21) |
SCO (N=1) |
SDEV (N=2) |
SEQ (N=1) |
SHAEM (N=19) |
SPXYL (N=5) |
SSUC (N=12) |
SUB (N=1) |
SXYL (N=13) |
Overall (N=84) |
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
presence_gene_type_isolate | ||||||||||||
0 | 0 (0%) | 3 (100%) | 21 (100%) | 1 (100%) | 2 (100%) | 1 (100%) | 19 (100%) | 0 (0%) | 12 (100%) | 1 (100%) | 13 (100%) | 73 (86.9%) |
1 | 6 (100%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 5 (100%) | 0 (0%) | 0 (0%) | 0 (0%) | 11 (13.1%) |
# Fosfomycin
table1(~presence_gene_type_isolate|wgs_species_3,data=amr_fosfomycin_isolate)
MSC (N=6) |
SAU (N=3) |
SCH (N=21) |
SCO (N=1) |
SDEV (N=2) |
SEQ (N=1) |
SHAEM (N=19) |
SPXYL (N=5) |
SSUC (N=12) |
SUB (N=1) |
SXYL (N=13) |
Overall (N=84) |
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
presence_gene_type_isolate | ||||||||||||
0 | 5 (83.3%) | 2 (66.7%) | 21 (100%) | 1 (100%) | 2 (100%) | 1 (100%) | 19 (100%) | 4 (80.0%) | 12 (100%) | 1 (100%) | 12 (92.3%) | 80 (95.2%) |
1 | 1 (16.7%) | 1 (33.3%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 (20.0%) | 0 (0%) | 0 (0%) | 1 (7.7%) | 4 (4.8%) |
# Fusidic acid
table1(~presence_gene_type_isolate|wgs_species_3,data=amr_fusidic_acid_isolate)
MSC (N=6) |
SAU (N=3) |
SCH (N=21) |
SCO (N=1) |
SDEV (N=2) |
SEQ (N=1) |
SHAEM (N=19) |
SPXYL (N=5) |
SSUC (N=12) |
SUB (N=1) |
SXYL (N=13) |
Overall (N=84) |
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
presence_gene_type_isolate | ||||||||||||
0 | 6 (100%) | 3 (100%) | 21 (100%) | 0 (0%) | 2 (100%) | 1 (100%) | 19 (100%) | 5 (100%) | 12 (100%) | 1 (100%) | 13 (100%) | 83 (98.8%) |
1 | 0 (0%) | 0 (0%) | 0 (0%) | 1 (100%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 (1.2%) |
# MLS
table1(~presence_gene_type_isolate|wgs_species_3,data=amr_mls_isolate)
MSC (N=6) |
SAU (N=3) |
SCH (N=21) |
SCO (N=1) |
SDEV (N=2) |
SEQ (N=1) |
SHAEM (N=19) |
SPXYL (N=5) |
SSUC (N=12) |
SUB (N=1) |
SXYL (N=13) |
Overall (N=84) |
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
presence_gene_type_isolate | ||||||||||||
0 | 4 (66.7%) | 0 (0%) | 1 (4.8%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 12 (100%) | 1 (100%) | 6 (46.2%) | 24 (28.6%) |
1 | 2 (33.3%) | 3 (100%) | 20 (95.2%) | 1 (100%) | 2 (100%) | 1 (100%) | 19 (100%) | 5 (100%) | 0 (0%) | 0 (0%) | 7 (53.8%) | 60 (71.4%) |
# Multicompound resistance
table1(~presence_gene_type_isolate|wgs_species_3,data=amr_multicompound_isolate)
MSC (N=6) |
SAU (N=3) |
SCH (N=21) |
SCO (N=1) |
SDEV (N=2) |
SEQ (N=1) |
SHAEM (N=19) |
SPXYL (N=5) |
SSUC (N=12) |
SUB (N=1) |
SXYL (N=13) |
Overall (N=84) |
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
presence_gene_type_isolate | ||||||||||||
0 | 6 (100%) | 0 (0%) | 21 (100%) | 1 (100%) | 2 (100%) | 1 (100%) | 19 (100%) | 5 (100%) | 12 (100%) | 1 (100%) | 13 (100%) | 81 (96.4%) |
1 | 0 (0%) | 3 (100%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 3 (3.6%) |
# Multidrug resistance
table1(~presence_gene_type_isolate|wgs_species_3,data=amr_multidrug_isolate)
MSC (N=6) |
SAU (N=3) |
SCH (N=21) |
SCO (N=1) |
SDEV (N=2) |
SEQ (N=1) |
SHAEM (N=19) |
SPXYL (N=5) |
SSUC (N=12) |
SUB (N=1) |
SXYL (N=13) |
Overall (N=84) |
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
presence_gene_type_isolate | ||||||||||||
0 | 0 (0%) | 0 (0%) | 21 (100%) | 1 (100%) | 0 (0%) | 1 (100%) | 0 (0%) | 5 (100%) | 12 (100%) | 1 (100%) | 13 (100%) | 54 (64.3%) |
1 | 6 (100%) | 3 (100%) | 0 (0%) | 0 (0%) | 2 (100%) | 0 (0%) | 19 (100%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 30 (35.7%) |
# Phenicol
table1(~presence_gene_type_isolate|wgs_species_3,data=amr_phenicol_isolate)
MSC (N=6) |
SAU (N=3) |
SCH (N=21) |
SCO (N=1) |
SDEV (N=2) |
SEQ (N=1) |
SHAEM (N=19) |
SPXYL (N=5) |
SSUC (N=12) |
SUB (N=1) |
SXYL (N=13) |
Overall (N=84) |
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
presence_gene_type_isolate | ||||||||||||
0 | 6 (100%) | 0 (0%) | 21 (100%) | 1 (100%) | 2 (100%) | 1 (100%) | 19 (100%) | 5 (100%) | 12 (100%) | 1 (100%) | 13 (100%) | 81 (96.4%) |
1 | 0 (0%) | 3 (100%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 3 (3.6%) |
# Tetracylines
table1(~presence_gene_type_isolate|wgs_species_3,data=amr_tetracyclines_isolate)
MSC (N=6) |
SAU (N=3) |
SCH (N=21) |
SCO (N=1) |
SDEV (N=2) |
SEQ (N=1) |
SHAEM (N=19) |
SPXYL (N=5) |
SSUC (N=12) |
SUB (N=1) |
SXYL (N=13) |
Overall (N=84) |
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
presence_gene_type_isolate | ||||||||||||
0 | 6 (100%) | 0 (0%) | 21 (100%) | 0 (0%) | 2 (100%) | 1 (100%) | 19 (100%) | 5 (100%) | 12 (100%) | 1 (100%) | 13 (100%) | 80 (95.2%) |
1 | 0 (0%) | 3 (100%) | 0 (0%) | 1 (100%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 4 (4.8%) |
# --- Plasmids ----
plasmid_summary <- plasmid_long %>%
group_by(wgs_isolate_id,wgs_species_3) %>%
summarise(n_plasmids=as.factor(sum(presence)),presence_plasmid=as.factor(ifelse(sum(presence)>0,1,0)))
## `summarise()` has grouped output by 'wgs_isolate_id'. You can override using
## the `.groups` argument.
table1::table1(~n_plasmids + presence_plasmid|wgs_species_3, data= plasmid_summary)
MSC (N=6) |
SAU (N=3) |
SCH (N=21) |
SCO (N=1) |
SDEV (N=2) |
SEQ (N=1) |
SHAEM (N=19) |
SPXYL (N=5) |
SSUC (N=12) |
SXYL (N=13) |
Overall (N=83) |
|
---|---|---|---|---|---|---|---|---|---|---|---|
n_plasmids | |||||||||||
0 | 3 (50.0%) | 0 (0%) | 20 (95.2%) | 0 (0%) | 0 (0%) | 0 (0%) | 9 (47.4%) | 0 (0%) | 6 (50.0%) | 0 (0%) | 38 (45.8%) |
1 | 2 (33.3%) | 2 (66.7%) | 1 (4.8%) | 0 (0%) | 1 (50.0%) | 0 (0%) | 5 (26.3%) | 0 (0%) | 4 (33.3%) | 6 (46.2%) | 21 (25.3%) |
2 | 1 (16.7%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 (50.0%) | 1 (100%) | 4 (21.1%) | 5 (100%) | 2 (16.7%) | 6 (46.2%) | 20 (24.1%) |
3 | 0 (0%) | 1 (33.3%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 (5.3%) | 0 (0%) | 0 (0%) | 1 (7.7%) | 3 (3.6%) |
6 | 0 (0%) | 0 (0%) | 0 (0%) | 1 (100%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 (1.2%) |
presence_plasmid | |||||||||||
0 | 3 (50.0%) | 0 (0%) | 20 (95.2%) | 0 (0%) | 0 (0%) | 0 (0%) | 9 (47.4%) | 0 (0%) | 6 (50.0%) | 0 (0%) | 38 (45.8%) |
1 | 3 (50.0%) | 3 (100%) | 1 (4.8%) | 1 (100%) | 2 (100%) | 1 (100%) | 10 (52.6%) | 5 (100%) | 6 (50.0%) | 13 (100%) | 45 (54.2%) |
table1::table1(~presence_gene|gene_abbreviation, data= plasmid_long)
## Warning in .table1.internal(x = x, labels = labels, groupspan = groupspan, :
## Table has 30 columns. Are you sure this is what you want?
Cassette (N=83) |
pETB (N=83) |
pKH13 (N=83) |
pKH21 (N=83) |
pLNU1 (N=83) |
pLNU3 (N=83) |
pLNU9 (N=83) |
pLUG10 (N=83) |
pN315 (N=83) |
pRJ9 (N=83) |
pS0385 (N=83) |
pSaa6159 (N=83) |
pSAS (N=83) |
pSE12228p05 (N=83) |
pSHaeA (N=83) |
pSJH101 (N=83) |
pSK1 (N=83) |
pSK41 (N=83) |
pSSAP2 (N=83) |
pSSP1 (N=83) |
pSSP2 (N=83) |
pTW20 (N=83) |
pvSw4 (N=83) |
SAP016A (N=83) |
SAP019A (N=83) |
SAP099B (N=166) |
SAP105A (N=83) |
SAP108C (N=83) |
VRSAp (N=83) |
Overall (N=2490) |
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
presence_gene | ||||||||||||||||||||||||||||||
No | 82 (98.8%) | 82 (98.8%) | 82 (98.8%) | 82 (98.8%) | 82 (98.8%) | 82 (98.8%) | 78 (94.0%) | 82 (98.8%) | 82 (98.8%) | 81 (97.6%) | 82 (98.8%) | 79 (95.2%) | 82 (98.8%) | 81 (97.6%) | 82 (98.8%) | 74 (89.2%) | 82 (98.8%) | 82 (98.8%) | 73 (88.0%) | 82 (98.8%) | 80 (96.4%) | 81 (97.6%) | 74 (89.2%) | 77 (92.8%) | 82 (98.8%) | 164 (98.8%) | 79 (95.2%) | 81 (97.6%) | 82 (98.8%) | 2414 (96.9%) |
Yes | 1 (1.2%) | 1 (1.2%) | 1 (1.2%) | 1 (1.2%) | 1 (1.2%) | 1 (1.2%) | 5 (6.0%) | 1 (1.2%) | 1 (1.2%) | 2 (2.4%) | 1 (1.2%) | 4 (4.8%) | 1 (1.2%) | 2 (2.4%) | 1 (1.2%) | 9 (10.8%) | 1 (1.2%) | 1 (1.2%) | 10 (12.0%) | 1 (1.2%) | 3 (3.6%) | 2 (2.4%) | 9 (10.8%) | 6 (7.2%) | 1 (1.2%) | 2 (1.2%) | 4 (4.8%) | 2 (2.4%) | 1 (1.2%) | 76 (3.1%) |
table1::table1(~presence_gene|wgs_species_3:gene_abbreviation, data= plasmid_long)
## Warning in .table1.internal(x = x, labels = labels, groupspan = groupspan, :
## Table has 319 columns. Are you sure this is what you want?
MSC |
SAU |
SCH |
SCO |
SDEV |
SEQ |
SHAEM |
SPXYL |
SSUC |
SXYL |
Overall |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cassette (N=6) |
pETB (N=6) |
pKH13 (N=6) |
pKH21 (N=6) |
pLNU1 (N=6) |
pLNU3 (N=6) |
pLNU9 (N=6) |
pLUG10 (N=6) |
pN315 (N=6) |
pRJ9 (N=6) |
pS0385 (N=6) |
pSaa6159 (N=6) |
pSAS (N=6) |
pSE12228p05 (N=6) |
pSHaeA (N=6) |
pSJH101 (N=6) |
pSK1 (N=6) |
pSK41 (N=6) |
pSSAP2 (N=6) |
pSSP1 (N=6) |
pSSP2 (N=6) |
pTW20 (N=6) |
pvSw4 (N=6) |
SAP016A (N=6) |
SAP019A (N=6) |
SAP099B (N=12) |
SAP105A (N=6) |
SAP108C (N=6) |
VRSAp (N=6) |
Cassette (N=3) |
pETB (N=3) |
pKH13 (N=3) |
pKH21 (N=3) |
pLNU1 (N=3) |
pLNU3 (N=3) |
pLNU9 (N=3) |
pLUG10 (N=3) |
pN315 (N=3) |
pRJ9 (N=3) |
pS0385 (N=3) |
pSaa6159 (N=3) |
pSAS (N=3) |
pSE12228p05 (N=3) |
pSHaeA (N=3) |
pSJH101 (N=3) |
pSK1 (N=3) |
pSK41 (N=3) |
pSSAP2 (N=3) |
pSSP1 (N=3) |
pSSP2 (N=3) |
pTW20 (N=3) |
pvSw4 (N=3) |
SAP016A (N=3) |
SAP019A (N=3) |
SAP099B (N=6) |
SAP105A (N=3) |
SAP108C (N=3) |
VRSAp (N=3) |
Cassette (N=21) |
pETB (N=21) |
pKH13 (N=21) |
pKH21 (N=21) |
pLNU1 (N=21) |
pLNU3 (N=21) |
pLNU9 (N=21) |
pLUG10 (N=21) |
pN315 (N=21) |
pRJ9 (N=21) |
pS0385 (N=21) |
pSaa6159 (N=21) |
pSAS (N=21) |
pSE12228p05 (N=21) |
pSHaeA (N=21) |
pSJH101 (N=21) |
pSK1 (N=21) |
pSK41 (N=21) |
pSSAP2 (N=21) |
pSSP1 (N=21) |
pSSP2 (N=21) |
pTW20 (N=21) |
pvSw4 (N=21) |
SAP016A (N=21) |
SAP019A (N=21) |
SAP099B (N=42) |
SAP105A (N=21) |
SAP108C (N=21) |
VRSAp (N=21) |
Cassette (N=1) |
pETB (N=1) |
pKH13 (N=1) |
pKH21 (N=1) |
pLNU1 (N=1) |
pLNU3 (N=1) |
pLNU9 (N=1) |
pLUG10 (N=1) |
pN315 (N=1) |
pRJ9 (N=1) |
pS0385 (N=1) |
pSaa6159 (N=1) |
pSAS (N=1) |
pSE12228p05 (N=1) |
pSHaeA (N=1) |
pSJH101 (N=1) |
pSK1 (N=1) |
pSK41 (N=1) |
pSSAP2 (N=1) |
pSSP1 (N=1) |
pSSP2 (N=1) |
pTW20 (N=1) |
pvSw4 (N=1) |
SAP016A (N=1) |
SAP019A (N=1) |
SAP099B (N=2) |
SAP105A (N=1) |
SAP108C (N=1) |
VRSAp (N=1) |
Cassette (N=2) |
pETB (N=2) |
pKH13 (N=2) |
pKH21 (N=2) |
pLNU1 (N=2) |
pLNU3 (N=2) |
pLNU9 (N=2) |
pLUG10 (N=2) |
pN315 (N=2) |
pRJ9 (N=2) |
pS0385 (N=2) |
pSaa6159 (N=2) |
pSAS (N=2) |
pSE12228p05 (N=2) |
pSHaeA (N=2) |
pSJH101 (N=2) |
pSK1 (N=2) |
pSK41 (N=2) |
pSSAP2 (N=2) |
pSSP1 (N=2) |
pSSP2 (N=2) |
pTW20 (N=2) |
pvSw4 (N=2) |
SAP016A (N=2) |
SAP019A (N=2) |
SAP099B (N=4) |
SAP105A (N=2) |
SAP108C (N=2) |
VRSAp (N=2) |
Cassette (N=1) |
pETB (N=1) |
pKH13 (N=1) |
pKH21 (N=1) |
pLNU1 (N=1) |
pLNU3 (N=1) |
pLNU9 (N=1) |
pLUG10 (N=1) |
pN315 (N=1) |
pRJ9 (N=1) |
pS0385 (N=1) |
pSaa6159 (N=1) |
pSAS (N=1) |
pSE12228p05 (N=1) |
pSHaeA (N=1) |
pSJH101 (N=1) |
pSK1 (N=1) |
pSK41 (N=1) |
pSSAP2 (N=1) |
pSSP1 (N=1) |
pSSP2 (N=1) |
pTW20 (N=1) |
pvSw4 (N=1) |
SAP016A (N=1) |
SAP019A (N=1) |
SAP099B (N=2) |
SAP105A (N=1) |
SAP108C (N=1) |
VRSAp (N=1) |
Cassette (N=19) |
pETB (N=19) |
pKH13 (N=19) |
pKH21 (N=19) |
pLNU1 (N=19) |
pLNU3 (N=19) |
pLNU9 (N=19) |
pLUG10 (N=19) |
pN315 (N=19) |
pRJ9 (N=19) |
pS0385 (N=19) |
pSaa6159 (N=19) |
pSAS (N=19) |
pSE12228p05 (N=19) |
pSHaeA (N=19) |
pSJH101 (N=19) |
pSK1 (N=19) |
pSK41 (N=19) |
pSSAP2 (N=19) |
pSSP1 (N=19) |
pSSP2 (N=19) |
pTW20 (N=19) |
pvSw4 (N=19) |
SAP016A (N=19) |
SAP019A (N=19) |
SAP099B (N=38) |
SAP105A (N=19) |
SAP108C (N=19) |
VRSAp (N=19) |
Cassette (N=5) |
pETB (N=5) |
pKH13 (N=5) |
pKH21 (N=5) |
pLNU1 (N=5) |
pLNU3 (N=5) |
pLNU9 (N=5) |
pLUG10 (N=5) |
pN315 (N=5) |
pRJ9 (N=5) |
pS0385 (N=5) |
pSaa6159 (N=5) |
pSAS (N=5) |
pSE12228p05 (N=5) |
pSHaeA (N=5) |
pSJH101 (N=5) |
pSK1 (N=5) |
pSK41 (N=5) |
pSSAP2 (N=5) |
pSSP1 (N=5) |
pSSP2 (N=5) |
pTW20 (N=5) |
pvSw4 (N=5) |
SAP016A (N=5) |
SAP019A (N=5) |
SAP099B (N=10) |
SAP105A (N=5) |
SAP108C (N=5) |
VRSAp (N=5) |
Cassette (N=12) |
pETB (N=12) |
pKH13 (N=12) |
pKH21 (N=12) |
pLNU1 (N=12) |
pLNU3 (N=12) |
pLNU9 (N=12) |
pLUG10 (N=12) |
pN315 (N=12) |
pRJ9 (N=12) |
pS0385 (N=12) |
pSaa6159 (N=12) |
pSAS (N=12) |
pSE12228p05 (N=12) |
pSHaeA (N=12) |
pSJH101 (N=12) |
pSK1 (N=12) |
pSK41 (N=12) |
pSSAP2 (N=12) |
pSSP1 (N=12) |
pSSP2 (N=12) |
pTW20 (N=12) |
pvSw4 (N=12) |
SAP016A (N=12) |
SAP019A (N=12) |
SAP099B (N=24) |
SAP105A (N=12) |
SAP108C (N=12) |
VRSAp (N=12) |
Cassette (N=13) |
pETB (N=13) |
pKH13 (N=13) |
pKH21 (N=13) |
pLNU1 (N=13) |
pLNU3 (N=13) |
pLNU9 (N=13) |
pLUG10 (N=13) |
pN315 (N=13) |
pRJ9 (N=13) |
pS0385 (N=13) |
pSaa6159 (N=13) |
pSAS (N=13) |
pSE12228p05 (N=13) |
pSHaeA (N=13) |
pSJH101 (N=13) |
pSK1 (N=13) |
pSK41 (N=13) |
pSSAP2 (N=13) |
pSSP1 (N=13) |
pSSP2 (N=13) |
pTW20 (N=13) |
pvSw4 (N=13) |
SAP016A (N=13) |
SAP019A (N=13) |
SAP099B (N=26) |
SAP105A (N=13) |
SAP108C (N=13) |
VRSAp (N=13) |
Cassette (N=83) |
pETB (N=83) |
pKH13 (N=83) |
pKH21 (N=83) |
pLNU1 (N=83) |
pLNU3 (N=83) |
pLNU9 (N=83) |
pLUG10 (N=83) |
pN315 (N=83) |
pRJ9 (N=83) |
pS0385 (N=83) |
pSaa6159 (N=83) |
pSAS (N=83) |
pSE12228p05 (N=83) |
pSHaeA (N=83) |
pSJH101 (N=83) |
pSK1 (N=83) |
pSK41 (N=83) |
pSSAP2 (N=83) |
pSSP1 (N=83) |
pSSP2 (N=83) |
pTW20 (N=83) |
pvSw4 (N=83) |
SAP016A (N=83) |
SAP019A (N=83) |
SAP099B (N=166) |
SAP105A (N=83) |
SAP108C (N=83) |
VRSAp (N=83) |
|
presence_gene | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
No | 6 (100%) | 6 (100%) | 5 (83.3%) | 6 (100%) | 5 (83.3%) | 6 (100%) | 5 (83.3%) | 6 (100%) | 6 (100%) | 6 (100%) | 6 (100%) | 6 (100%) | 6 (100%) | 5 (83.3%) | 6 (100%) | 6 (100%) | 6 (100%) | 6 (100%) | 6 (100%) | 6 (100%) | 6 (100%) | 6 (100%) | 6 (100%) | 6 (100%) | 6 (100%) | 12 (100%) | 6 (100%) | 6 (100%) | 6 (100%) | 3 (100%) | 3 (100%) | 3 (100%) | 3 (100%) | 3 (100%) | 3 (100%) | 3 (100%) | 3 (100%) | 2 (66.7%) | 1 (33.3%) | 3 (100%) | 3 (100%) | 3 (100%) | 3 (100%) | 3 (100%) | 2 (66.7%) | 3 (100%) | 3 (100%) | 3 (100%) | 3 (100%) | 3 (100%) | 3 (100%) | 3 (100%) | 3 (100%) | 2 (66.7%) | 6 (100%) | 3 (100%) | 3 (100%) | 3 (100%) | 21 (100%) | 21 (100%) | 21 (100%) | 21 (100%) | 21 (100%) | 21 (100%) | 21 (100%) | 21 (100%) | 21 (100%) | 21 (100%) | 21 (100%) | 21 (100%) | 21 (100%) | 20 (95.2%) | 21 (100%) | 21 (100%) | 21 (100%) | 21 (100%) | 21 (100%) | 21 (100%) | 21 (100%) | 21 (100%) | 21 (100%) | 21 (100%) | 21 (100%) | 42 (100%) | 21 (100%) | 21 (100%) | 21 (100%) | 0 (0%) | 1 (100%) | 1 (100%) | 1 (100%) | 1 (100%) | 1 (100%) | 0 (0%) | 0 (0%) | 1 (100%) | 1 (100%) | 1 (100%) | 1 (100%) | 1 (100%) | 1 (100%) | 1 (100%) | 1 (100%) | 0 (0%) | 1 (100%) | 1 (100%) | 0 (0%) | 1 (100%) | 1 (100%) | 0 (0%) | 1 (100%) | 1 (100%) | 2 (100%) | 1 (100%) | 1 (100%) | 1 (100%) | 2 (100%) | 2 (100%) | 2 (100%) | 2 (100%) | 2 (100%) | 2 (100%) | 2 (100%) | 2 (100%) | 2 (100%) | 2 (100%) | 2 (100%) | 2 (100%) | 2 (100%) | 2 (100%) | 2 (100%) | 2 (100%) | 2 (100%) | 1 (50.0%) | 2 (100%) | 2 (100%) | 2 (100%) | 2 (100%) | 2 (100%) | 2 (100%) | 2 (100%) | 4 (100%) | 1 (50.0%) | 2 (100%) | 1 (50.0%) | 1 (100%) | 1 (100%) | 1 (100%) | 0 (0%) | 1 (100%) | 1 (100%) | 1 (100%) | 1 (100%) | 1 (100%) | 1 (100%) | 1 (100%) | 1 (100%) | 1 (100%) | 1 (100%) | 1 (100%) | 0 (0%) | 1 (100%) | 1 (100%) | 1 (100%) | 1 (100%) | 1 (100%) | 1 (100%) | 1 (100%) | 1 (100%) | 1 (100%) | 2 (100%) | 1 (100%) | 1 (100%) | 1 (100%) | 19 (100%) | 19 (100%) | 19 (100%) | 19 (100%) | 19 (100%) | 19 (100%) | 16 (84.2%) | 19 (100%) | 19 (100%) | 19 (100%) | 19 (100%) | 19 (100%) | 19 (100%) | 19 (100%) | 18 (94.7%) | 18 (94.7%) | 19 (100%) | 19 (100%) | 19 (100%) | 19 (100%) | 19 (100%) | 19 (100%) | 19 (100%) | 13 (68.4%) | 19 (100%) | 36 (94.7%) | 16 (84.2%) | 19 (100%) | 19 (100%) | 5 (100%) | 5 (100%) | 5 (100%) | 5 (100%) | 5 (100%) | 5 (100%) | 5 (100%) | 5 (100%) | 5 (100%) | 5 (100%) | 5 (100%) | 5 (100%) | 5 (100%) | 5 (100%) | 5 (100%) | 4 (80.0%) | 5 (100%) | 5 (100%) | 1 (20.0%) | 5 (100%) | 5 (100%) | 5 (100%) | 0 (0%) | 5 (100%) | 5 (100%) | 10 (100%) | 5 (100%) | 5 (100%) | 5 (100%) | 12 (100%) | 12 (100%) | 12 (100%) | 12 (100%) | 12 (100%) | 12 (100%) | 12 (100%) | 12 (100%) | 12 (100%) | 12 (100%) | 11 (91.7%) | 8 (66.7%) | 12 (100%) | 12 (100%) | 12 (100%) | 11 (91.7%) | 12 (100%) | 12 (100%) | 12 (100%) | 12 (100%) | 12 (100%) | 12 (100%) | 10 (83.3%) | 12 (100%) | 12 (100%) | 24 (100%) | 12 (100%) | 12 (100%) | 12 (100%) | 13 (100%) | 12 (92.3%) | 13 (100%) | 13 (100%) | 13 (100%) | 12 (92.3%) | 13 (100%) | 13 (100%) | 13 (100%) | 13 (100%) | 13 (100%) | 13 (100%) | 12 (92.3%) | 13 (100%) | 13 (100%) | 9 (69.2%) | 13 (100%) | 13 (100%) | 7 (53.8%) | 13 (100%) | 10 (76.9%) | 11 (84.6%) | 12 (92.3%) | 13 (100%) | 13 (100%) | 26 (100%) | 13 (100%) | 11 (84.6%) | 13 (100%) | 82 (98.8%) | 82 (98.8%) | 82 (98.8%) | 82 (98.8%) | 82 (98.8%) | 82 (98.8%) | 78 (94.0%) | 82 (98.8%) | 82 (98.8%) | 81 (97.6%) | 82 (98.8%) | 79 (95.2%) | 82 (98.8%) | 81 (97.6%) | 82 (98.8%) | 74 (89.2%) | 82 (98.8%) | 82 (98.8%) | 73 (88.0%) | 82 (98.8%) | 80 (96.4%) | 81 (97.6%) | 74 (89.2%) | 77 (92.8%) | 82 (98.8%) | 164 (98.8%) | 79 (95.2%) | 81 (97.6%) | 82 (98.8%) |
Yes | 0 (0%) | 0 (0%) | 1 (16.7%) | 0 (0%) | 1 (16.7%) | 0 (0%) | 1 (16.7%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 (16.7%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 (33.3%) | 2 (66.7%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 (33.3%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 (33.3%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 (4.8%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 (100%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 (100%) | 1 (100%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 (100%) | 0 (0%) | 0 (0%) | 1 (100%) | 0 (0%) | 0 (0%) | 1 (100%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 (50.0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 (50.0%) | 0 (0%) | 1 (50.0%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 (100%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 (100%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 3 (15.8%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 (5.3%) | 1 (5.3%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 6 (31.6%) | 0 (0%) | 2 (5.3%) | 3 (15.8%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 (20.0%) | 0 (0%) | 0 (0%) | 4 (80.0%) | 0 (0%) | 0 (0%) | 0 (0%) | 5 (100%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 (8.3%) | 4 (33.3%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 (8.3%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 2 (16.7%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 (7.7%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 (7.7%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 (7.7%) | 0 (0%) | 0 (0%) | 4 (30.8%) | 0 (0%) | 0 (0%) | 6 (46.2%) | 0 (0%) | 3 (23.1%) | 2 (15.4%) | 1 (7.7%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 2 (15.4%) | 0 (0%) | 1 (1.2%) | 1 (1.2%) | 1 (1.2%) | 1 (1.2%) | 1 (1.2%) | 1 (1.2%) | 5 (6.0%) | 1 (1.2%) | 1 (1.2%) | 2 (2.4%) | 1 (1.2%) | 4 (4.8%) | 1 (1.2%) | 2 (2.4%) | 1 (1.2%) | 9 (10.8%) | 1 (1.2%) | 1 (1.2%) | 10 (12.0%) | 1 (1.2%) | 3 (3.6%) | 2 (2.4%) | 9 (10.8%) | 6 (7.2%) | 1 (1.2%) | 2 (1.2%) | 4 (4.8%) | 2 (2.4%) | 1 (1.2%) |
# Chromogenes
# No plasmids = or > isolates
# Haemolyticus
model_1_plasmids_sau <- lm(mic_sau ~ as.factor(`rep13_7_rep(pLNU9)`) ,data=mb_haemolyticus_plasmids)
summary(model_1_plasmids_sau)
##
## Call:
## lm(formula = mic_sau ~ as.factor(`rep13_7_rep(pLNU9)`), data = mb_haemolyticus_plasmids)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.77250 -0.07458 0.10750 0.41250 0.72750
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.9325 0.1928 20.400 2.96e-11 ***
## as.factor(`rep13_7_rep(pLNU9)`)1 0.2042 0.4310 0.474 0.644
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6678 on 13 degrees of freedom
## (4 observations deleted due to missingness)
## Multiple R-squared: 0.01697, Adjusted R-squared: -0.05865
## F-statistic: 0.2244 on 1 and 13 DF, p-value: 0.6436
model_1_plasmids_sub <- lm(mic_sub ~ as.factor(`rep13_7_rep(pLNU9)`),data=mb_haemolyticus_plasmids)
summary(model_1_plasmids_sub)
##
## Call:
## lm(formula = mic_sub ~ as.factor(`rep13_7_rep(pLNU9)`), data = mb_haemolyticus_plasmids)
##
## Residuals:
## 1 6 10 11 13 15
## -1.360e-01 1.388e-17 -1.416e+00 6.940e-01 3.940e-01 4.640e-01
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.5760 0.3792 9.431 0.000705 ***
## as.factor(`rep13_7_rep(pLNU9)`)1 -0.3960 0.9288 -0.426 0.691799
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8479 on 4 degrees of freedom
## (13 observations deleted due to missingness)
## Multiple R-squared: 0.04347, Adjusted R-squared: -0.1957
## F-statistic: 0.1818 on 1 and 4 DF, p-value: 0.6918
model_2_plasmids_sau <- lm(mic_sau ~ as.factor(`rep39_2_repA(SAP016A)`),data=mb_haemolyticus_plasmids)
summary(model_2_plasmids_sau)
##
## Call:
## lm(formula = mic_sau ~ as.factor(`rep39_2_repA(SAP016A)`), data = mb_haemolyticus_plasmids)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.59778 -0.14722 0.07222 0.32278 0.80222
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.7578 0.2036 18.454 1.05e-10 ***
## as.factor(`rep39_2_repA(SAP016A)`)1 0.5389 0.3220 1.674 0.118
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6109 on 13 degrees of freedom
## (4 observations deleted due to missingness)
## Multiple R-squared: 0.1773, Adjusted R-squared: 0.114
## F-statistic: 2.801 on 1 and 13 DF, p-value: 0.1181
model_2_plasmids_sub <- lm(mic_sub ~ as.factor(`rep39_2_repA(SAP016A)`),data=mb_haemolyticus_plasmids)
summary(model_2_plasmids_sub)
##
## Call:
## lm(formula = mic_sub ~ as.factor(`rep39_2_repA(SAP016A)`), data = mb_haemolyticus_plasmids)
##
## Residuals:
## 1 6 10 11 13 15
## -0.19 -0.45 -1.23 0.64 0.58 0.65
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.3900 0.4933 6.872 0.00235 **
## as.factor(`rep39_2_repA(SAP016A)`)1 0.2400 0.6976 0.344 0.74815
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8544 on 4 degrees of freedom
## (13 observations deleted due to missingness)
## Multiple R-squared: 0.02874, Adjusted R-squared: -0.2141
## F-statistic: 0.1184 on 1 and 4 DF, p-value: 0.7481
model_4_plasmids_sau <- lm(mic_sau ~ as.factor(`rep19b_1_repA(SAP105A)`),data=mb_haemolyticus_plasmids)
summary(model_4_plasmids_sau)
##
## Call:
## lm(formula = mic_sau ~ as.factor(`rep19b_1_repA(SAP105A)`), data = mb_haemolyticus_plasmids)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.7517 -0.1308 0.1783 0.3133 0.7483
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.9117 0.1906 20.520 2.75e-11 ***
## as.factor(`rep19b_1_repA(SAP105A)`)1 0.3083 0.4263 0.723 0.482
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6603 on 13 degrees of freedom
## (4 observations deleted due to missingness)
## Multiple R-squared: 0.03869, Adjusted R-squared: -0.03525
## F-statistic: 0.5232 on 1 and 13 DF, p-value: 0.4823
model_4_plasmids_sub <- lm(mic_sub ~ as.factor(`rep19b_1_repA(SAP105A)`),data=mb_haemolyticus_plasmids)
summary(model_4_plasmids_sub)
##
## Call:
## lm(formula = mic_sub ~ as.factor(`rep19b_1_repA(SAP105A)`), data = mb_haemolyticus_plasmids)
##
## Residuals:
## 1 6 10 11 13 15
## -0.1133 -0.3733 -1.3067 0.8033 0.5033 0.4867
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.46667 0.49959 6.939 0.00227 **
## as.factor(`rep19b_1_repA(SAP105A)`)1 0.08667 0.70653 0.123 0.90829
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8653 on 4 degrees of freedom
## (13 observations deleted due to missingness)
## Multiple R-squared: 0.003748, Adjusted R-squared: -0.2453
## F-statistic: 0.01505 on 1 and 4 DF, p-value: 0.9083
# Succinus (psaa6159 associated)
model_5_plasmids_sau <- lm(mic_sau ~ as.factor(`rep16_3_rep(pSaa6159)`) ,data=mb_succinus_plasmids)
summary(model_5_plasmids_sau)
##
## Call:
## lm(formula = mic_sau ~ as.factor(`rep16_3_rep(pSaa6159)`), data = mb_succinus_plasmids)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.2325 -0.1462 -0.0300 0.3137 0.9575
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.1525 0.2120 14.870 1.22e-07 ***
## as.factor(`rep16_3_rep(pSaa6159)`)1 -0.8425 0.4060 -2.075 0.0678 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5996 on 9 degrees of freedom
## (1 observation deleted due to missingness)
## Multiple R-squared: 0.3237, Adjusted R-squared: 0.2485
## F-statistic: 4.307 on 1 and 9 DF, p-value: 0.06778
Confint(model_5_plasmids_sau)
## Estimate 2.5 % 97.5 %
## (Intercept) 3.1525 2.672909 3.63209080
## as.factor(`rep16_3_rep(pSaa6159)`)1 -0.8425 -1.760846 0.07584647
model_5_plasmids_sub <- lm(mic_sub ~ as.factor(`rep16_3_rep(pSaa6159)`),data=mb_succinus_plasmids)
summary(model_5_plasmids_sub)
##
## Call:
## lm(formula = mic_sub ~ as.factor(`rep16_3_rep(pSaa6159)`), data = mb_succinus_plasmids)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.5025 -0.3713 -0.0300 0.7025 0.9875
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.1525 0.3144 10.03 3.5e-06 ***
## as.factor(`rep16_3_rep(pSaa6159)`)1 -0.8425 0.6020 -1.40 0.195
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8892 on 9 degrees of freedom
## (1 observation deleted due to missingness)
## Multiple R-squared: 0.1787, Adjusted R-squared: 0.08748
## F-statistic: 1.959 on 1 and 9 DF, p-value: 0.1952
Confint(model_5_plasmids_sub)
## Estimate 2.5 % 97.5 %
## (Intercept) 3.1525 2.441321 3.8636792
## as.factor(`rep16_3_rep(pSaa6159)`)1 -0.8425 -2.204305 0.5193046
model_6_plasmids_sau <- lm(mic_sau ~ as.factor(`rep19c_2_rep(pvSw4)`) ,data=mb_succinus_plasmids)
summary(model_6_plasmids_sau)
##
## Call:
## lm(formula = mic_sau ~ as.factor(`rep19c_2_rep(pvSw4)`), data = mb_succinus_plasmids)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.8456 -0.3706 -0.0500 0.3044 1.3444
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.7656 0.2097 13.188 3.43e-07 ***
## as.factor(`rep19c_2_rep(pvSw4)`)1 0.8644 0.4918 1.758 0.113
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6291 on 9 degrees of freedom
## (1 observation deleted due to missingness)
## Multiple R-squared: 0.2556, Adjusted R-squared: 0.1728
## F-statistic: 3.09 on 1 and 9 DF, p-value: 0.1127
Confint(model_6_plasmids_sau)
## Estimate 2.5 % 97.5 %
## (Intercept) 2.7655556 2.2911731 3.239938
## as.factor(`rep19c_2_rep(pvSw4)`)1 0.8644444 -0.2480809 1.976970
model_6_plasmids_sub <- lm(mic_sub ~ as.factor(`rep19c_2_rep(pvSw4)`),data=mb_succinus_plasmids)
summary(model_6_plasmids_sub)
##
## Call:
## lm(formula = mic_sub ~ as.factor(`rep19c_2_rep(pvSw4)`), data = mb_succinus_plasmids)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.2267 -0.6667 -0.3667 0.8517 1.2633
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.8767 0.3251 8.849 9.8e-06 ***
## as.factor(`rep19c_2_rep(pvSw4)`)1 0.2533 0.7624 0.332 0.747
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9752 on 9 degrees of freedom
## (1 observation deleted due to missingness)
## Multiple R-squared: 0.01212, Adjusted R-squared: -0.09764
## F-statistic: 0.1104 on 1 and 9 DF, p-value: 0.7473
Confint(model_6_plasmids_sub)
## Estimate 2.5 % 97.5 %
## (Intercept) 2.8766667 2.141286 3.612047
## as.factor(`rep19c_2_rep(pvSw4)`)1 0.2533333 -1.471287 1.977953
# Xylosus & pseudoxylosus (pSSP2 associated)
model_7_plasmids_sau <- lm(mic_sau ~ as.factor(`rep16_2_CDS6(pSJH101)`) ,data=mb_xylosus_plasmids)
summary(model_7_plasmids_sau)
##
## Call:
## lm(formula = mic_sau ~ as.factor(`rep16_2_CDS6(pSJH101)`), data = mb_xylosus_plasmids)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.3800 -0.2825 -0.1640 0.0900 1.0100
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.0800 0.1186 25.971 1.65e-14 ***
## as.factor(`rep16_2_CDS6(pSJH101)`)1 -0.0920 0.2250 -0.409 0.688
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4276 on 16 degrees of freedom
## Multiple R-squared: 0.01034, Adjusted R-squared: -0.05151
## F-statistic: 0.1672 on 1 and 16 DF, p-value: 0.6881
Confint(model_7_plasmids_sau)
## Estimate 2.5 % 97.5 %
## (Intercept) 3.080 2.8285895 3.3314105
## as.factor(`rep16_2_CDS6(pSJH101)`)1 -0.092 -0.5690178 0.3850178
model_7_plasmids_sub <- lm(mic_sub ~ as.factor(`rep16_2_CDS6(pSJH101)`),data=mb_xylosus_plasmids)
summary(model_7_plasmids_sub)
##
## Call:
## lm(formula = mic_sub ~ as.factor(`rep16_2_CDS6(pSJH101)`), data = mb_xylosus_plasmids)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.3700 -0.3685 -0.1100 0.5680 1.0100
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.0800 0.1822 16.904 1.26e-11 ***
## as.factor(`rep16_2_CDS6(pSJH101)`)1 -0.0920 0.3457 -0.266 0.794
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.657 on 16 degrees of freedom
## Multiple R-squared: 0.004407, Adjusted R-squared: -0.05782
## F-statistic: 0.07082 on 1 and 16 DF, p-value: 0.7935
Confint(model_7_plasmids_sub)
## Estimate 2.5 % 97.5 %
## (Intercept) 3.080 2.6937382 3.4662618
## as.factor(`rep16_2_CDS6(pSJH101)`)1 -0.092 -0.8248802 0.6408802
model_8_plasmids_sau <- lm(mic_sau ~ as.factor(`rep20_14_repA(pSSAP2)`) ,data=mb_xylosus_plasmids)
summary(model_8_plasmids_sau)
##
## Call:
## lm(formula = mic_sau ~ as.factor(`rep20_14_repA(pSSAP2)`), data = mb_xylosus_plasmids)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.4350 -0.2297 -0.1487 0.1634 0.9550
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.9538 0.1482 19.935 1.01e-12 ***
## as.factor(`rep20_14_repA(pSSAP2)`)1 0.1812 0.1988 0.912 0.375
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4191 on 16 degrees of freedom
## Multiple R-squared: 0.04939, Adjusted R-squared: -0.01002
## F-statistic: 0.8313 on 1 and 16 DF, p-value: 0.3754
Confint(model_8_plasmids_sau)
## Estimate 2.5 % 97.5 %
## (Intercept) 2.95375 2.639650 3.267850
## as.factor(`rep20_14_repA(pSSAP2)`)1 0.18125 -0.240159 0.602659
model_8_plasmids_sub <- lm(mic_sub ~ as.factor(`rep20_14_repA(pSSAP2)`),data=mb_xylosus_plasmids)
summary(model_8_plasmids_sub)
##
## Call:
## lm(formula = mic_sub ~ as.factor(`rep20_14_repA(pSSAP2)`), data = mb_xylosus_plasmids)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.3250 -0.3378 -0.0650 0.5487 1.0550
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.07875 0.23264 13.23 4.92e-10 ***
## as.factor(`rep20_14_repA(pSSAP2)`)1 -0.04375 0.31212 -0.14 0.89
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.658 on 16 degrees of freedom
## Multiple R-squared: 0.001226, Adjusted R-squared: -0.0612
## F-statistic: 0.01965 on 1 and 16 DF, p-value: 0.8903
Confint(model_8_plasmids_sub)
## Estimate 2.5 % 97.5 %
## (Intercept) 3.07875 2.5855752 3.5719248
## as.factor(`rep20_14_repA(pSSAP2)`)1 -0.04375 -0.7054135 0.6179135
model_8_plasmids_sau <- lm(mic_sau ~ as.factor(`rep19c_4_rep(pSSP2)`) ,data=mb_xylosus_plasmids)
summary(model_8_plasmids_sau)
##
## Call:
## lm(formula = mic_sau ~ as.factor(`rep19c_4_rep(pSSP2)`), data = mb_xylosus_plasmids)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.48067 -0.27067 -0.14700 0.07683 0.99933
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.0907 0.1087 28.422 4.01e-15 ***
## as.factor(`rep19c_4_rep(pSSP2)`)1 -0.2173 0.2664 -0.816 0.427
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4212 on 16 degrees of freedom
## Multiple R-squared: 0.03995, Adjusted R-squared: -0.02006
## F-statistic: 0.6657 on 1 and 16 DF, p-value: 0.4265
Confint(model_8_plasmids_sau)
## Estimate 2.5 % 97.5 %
## (Intercept) 3.0906667 2.8601438 3.32119
## as.factor(`rep19c_4_rep(pSSP2)`)1 -0.2173333 -0.7819967 0.34733
model_8_plasmids_sub <- lm(mic_sub ~as.factor(`rep19c_4_rep(pSSP2)`),data=mb_xylosus_plasmids)
summary(model_8_plasmids_sub)
##
## Call:
## lm(formula = mic_sub ~ as.factor(`rep19c_4_rep(pSSP2)`), data = mb_xylosus_plasmids)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.6640 -0.3915 -0.1140 0.5503 0.8660
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.2240 0.1346 23.951 5.84e-14 ***
## as.factor(`rep19c_4_rep(pSSP2)`)1 -1.0173 0.3297 -3.085 0.00709 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5213 on 16 degrees of freedom
## Multiple R-squared: 0.373, Adjusted R-squared: 0.3339
## F-statistic: 9.52 on 1 and 16 DF, p-value: 0.007093
Confint(model_8_plasmids_sub)
## Estimate 2.5 % 97.5 %
## (Intercept) 3.224000 2.938644 3.5093559
## as.factor(`rep19c_4_rep(pSSP2)`)1 -1.017333 -1.716310 -0.3183569
model_9_plasmids_sau <- lm(mic_sau ~ as.factor(`rep20_3_rep(pTW20)`) ,data=mb_xylosus_plasmids)
summary(model_9_plasmids_sau)
##
## Call:
## lm(formula = mic_sau ~ as.factor(`rep20_3_rep(pTW20)`), data = mb_xylosus_plasmids)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.4300 -0.2850 -0.1250 0.1275 1.0500
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.0400 0.1069 28.435 3.98e-15 ***
## as.factor(`rep20_3_rep(pTW20)`)1 0.1300 0.3207 0.405 0.691
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4276 on 16 degrees of freedom
## Multiple R-squared: 0.01016, Adjusted R-squared: -0.0517
## F-statistic: 0.1643 on 1 and 16 DF, p-value: 0.6906
Confint(model_9_plasmids_sau)
## Estimate 2.5 % 97.5 %
## (Intercept) 3.04 2.8133615 3.2666385
## as.factor(`rep20_3_rep(pTW20)`)1 0.13 -0.5499154 0.8099154
model_9_plasmids_sub <- lm(mic_sub ~as.factor(`rep20_3_rep(pTW20)`),data=mb_xylosus_plasmids)
summary(model_9_plasmids_sub)
##
## Call:
## lm(formula = mic_sub ~ as.factor(`rep20_3_rep(pTW20)`), data = mb_xylosus_plasmids)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.33 -0.33 -0.07 0.49 1.05
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.0400 0.1642 18.509 3.15e-12 ***
## as.factor(`rep20_3_rep(pTW20)`)1 0.1300 0.4927 0.264 0.795
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.657 on 16 degrees of freedom
## Multiple R-squared: 0.004332, Adjusted R-squared: -0.0579
## F-statistic: 0.06961 on 1 and 16 DF, p-value: 0.7953
Confint(model_9_plasmids_sub)
## Estimate 2.5 % 97.5 %
## (Intercept) 3.04 2.6918152 3.388185
## as.factor(`rep20_3_rep(pTW20)`)1 0.13 -0.9145543 1.174554
model_10_plasmids_sau <- lm(mic_sau ~ as.factor(`rep19c_2_rep(pvSw4)`) ,data=mb_xylosus_plasmids)
summary(model_10_plasmids_sau)
##
## Call:
## lm(formula = mic_sau ~ as.factor(`rep19c_2_rep(pvSw4)`), data = mb_xylosus_plasmids)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.4700 -0.2567 -0.1267 0.1113 1.0483
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.04167 0.12396 24.538 4e-14 ***
## as.factor(`rep19c_2_rep(pvSw4)`)1 0.03833 0.21470 0.179 0.861
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4294 on 16 degrees of freedom
## Multiple R-squared: 0.001988, Adjusted R-squared: -0.06039
## F-statistic: 0.03188 on 1 and 16 DF, p-value: 0.8605
Confint(model_10_plasmids_sau)
## Estimate 2.5 % 97.5 %
## (Intercept) 3.04166667 2.7788886 3.3044447
## as.factor(`rep19c_2_rep(pvSw4)`)1 0.03833333 -0.4168116 0.4934783
model_10_plasmids_sub <- lm(mic_sub ~as.factor(`rep19c_2_rep(pvSw4)`),data=mb_xylosus_plasmids)
summary(model_10_plasmids_sub)
##
## Call:
## lm(formula = mic_sub ~ as.factor(`rep19c_2_rep(pvSw4)`), data = mb_xylosus_plasmids)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.33167 -0.36042 -0.09083 0.58333 1.04833
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.04167 0.18999 16.010 2.86e-11 ***
## as.factor(`rep19c_2_rep(pvSw4)`)1 0.03833 0.32907 0.116 0.909
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6581 on 16 degrees of freedom
## Multiple R-squared: 0.0008474, Adjusted R-squared: -0.0616
## F-statistic: 0.01357 on 1 and 16 DF, p-value: 0.9087
Confint(model_10_plasmids_sub)
## Estimate 2.5 % 97.5 %
## (Intercept) 3.04166667 2.6389147 3.4444186
## as.factor(`rep19c_2_rep(pvSw4)`)1 0.03833333 -0.6592536 0.7359202
model_11_plasmids_sau <- lm(mic_sau ~ as.factor(`rep7a_6_SAP108C001(SAP108C)`) ,data=mb_xylosus_plasmids)
summary(model_11_plasmids_sau)
##
## Call:
## lm(formula = mic_sau ~ as.factor(`rep7a_6_SAP108C001(SAP108C)`),
## data = mb_xylosus_plasmids)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.4725 -0.2975 -0.0475 0.0850 1.0075
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.0825 0.1054 29.252 2.55e-15
## as.factor(`rep7a_6_SAP108C001(SAP108C)`)1 -0.2525 0.3161 -0.799 0.436
##
## (Intercept) ***
## as.factor(`rep7a_6_SAP108C001(SAP108C)`)1
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4215 on 16 degrees of freedom
## Multiple R-squared: 0.03834, Adjusted R-squared: -0.02176
## F-statistic: 0.638 on 1 and 16 DF, p-value: 0.4361
Confint(model_11_plasmids_sau)
## Estimate 2.5 % 97.5 %
## (Intercept) 3.0825 2.8591109 3.3058891
## as.factor(`rep7a_6_SAP108C001(SAP108C)`)1 -0.2525 -0.9226673 0.4176673
model_11_plasmids_sub <- lm(mic_sub ~as.factor(`rep7a_6_SAP108C001(SAP108C)`),data=mb_xylosus_plasmids)
summary(model_11_plasmids_sub)
##
## Call:
## lm(formula = mic_sub ~ as.factor(`rep7a_6_SAP108C001(SAP108C)`),
## data = mb_xylosus_plasmids)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.3100 -0.3875 -0.0500 0.4275 1.0700
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.0200 0.1626 18.577 2.98e-12
## as.factor(`rep7a_6_SAP108C001(SAP108C)`)1 0.3100 0.4877 0.636 0.534
##
## (Intercept) ***
## as.factor(`rep7a_6_SAP108C001(SAP108C)`)1
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6502 on 16 degrees of freedom
## Multiple R-squared: 0.02463, Adjusted R-squared: -0.03633
## F-statistic: 0.4041 on 1 and 16 DF, p-value: 0.534
Confint(model_11_plasmids_sub)
## Estimate 2.5 % 97.5 %
## (Intercept) 3.02 2.6753829 3.364617
## as.factor(`rep7a_6_SAP108C001(SAP108C)`)1 0.31 -0.7238512 1.343851
# ---- amr genes ----
# Staphylococcus aureus
amr_plot_1 <- amr_sau %>%
ggplot(aes(x = gene_abbreviation, y = fct_reorder(amr_sau$wgs_isolate_id,amr_sau$wgs_id))) +
geom_tile(aes(fill = presence_gene), color = "black") +
scale_fill_manual(labels = c("No", "Yes"), values = c("white", "#009999")) +
labs(y = "Isolate ID", x = "Gene ID",fill="Presence gene",title="Staphylococcus aureus") +
scale_y_discrete(limits = rev) +
theme(plot.title=element_text(face="italic"),axis.text.x=element_blank(),axis.title.x = element_blank())
# Staphylococcus chromogenes
amr_plot_2 <- amr_sch %>%
ggplot(aes(x = gene_abbreviation, y = fct_reorder(amr_sch$wgs_isolate_id,amr_sch$wgs_id))) +
geom_tile(aes(fill = presence_gene), color = "black") +
scale_fill_manual(labels = c("No", "Yes"), values = c("white", "#009999")) +
labs(y = "Isolate ID", x = "Gene ID",fill="Presence gene",title="Staphylococcus chromogenes") +
scale_y_discrete(limits = rev) +
theme(plot.title=element_text(face="italic"),axis.text.x=element_blank(),axis.title.x = element_blank())
# Staphylococcus haemolyticus
amr_plot_3 <- amr_shaem %>%
ggplot(aes(x = gene_abbreviation, y = fct_reorder(amr_shaem$wgs_isolate_id,amr_shaem$wgs_id))) +
geom_tile(aes(fill = presence_gene), color = "black") +
scale_fill_manual(labels = c("No", "Yes"), values = c("white", "#009999")) +
labs(y = "Isolate ID", x = "Gene ID",fill="Presence gene",title="Staphylococcus haemolyticus") +
scale_y_discrete(limits = rev) +
theme(plot.title=element_text(face="italic"),axis.text.x=element_blank(),axis.title.x = element_blank())
# Staphylococcus sciuri
amr_plot_4 <- amr_ssc %>%
ggplot(aes(x = gene_abbreviation, y = fct_reorder(amr_ssc$wgs_isolate_id,amr_ssc$wgs_id))) +
geom_tile(aes(fill = presence_gene), color = "black") +
scale_fill_manual(labels = c("No", "Yes"), values = c("white", "#009999")) +
labs(y = "Isolate ID", x = "Gene ID",fill="Presence gene",title="Mammaliicoccus sciuri") +
scale_y_discrete(limits = rev) +
theme(plot.title=element_text(face="italic"),axis.text.x=element_blank(),axis.title.x = element_blank())
#Staphylococcus succinus
amr_plot_5 <- amr_ssuc %>%
ggplot(aes(x = gene_abbreviation, y = fct_reorder(amr_ssuc$wgs_isolate_id,amr_ssuc$wgs_id))) +
geom_tile(aes(fill = presence_gene), color = "black") +
scale_fill_manual(labels = c("No", "Yes"), values = c("white", "#009999")) +
labs(y = "Isolate ID", x = "Gene ID",fill="Presence gene",title="Staphylococcus succinus") +
scale_y_discrete(limits = rev) +
theme(plot.title=element_text(face="italic"),axis.text.x=element_blank(),axis.title.x = element_blank())
# Staphylococcus xylosus/saprophytiucs
amr_plot_6 <- amr_sxyl_spxyl %>%
ggplot(aes(x = gene_abbreviation, y = wgs_isolate_id)) +
geom_tile(aes(fill = presence_gene), color = "black") +
scale_fill_manual(labels = c("No", "Yes"), values = c("white", "#009999")) +
labs(y = "Isolate ID", x = "Gene ID",fill="Presence gene",title="Staphylococcus xylosus/pseudoxylosus") +
scale_y_discrete(limits = rev) +
theme(plot.title=element_text(face="italic"),axis.text.x=element_blank(),axis.title.x = element_blank())
# Others
amr_plot_7 <- amr_other %>%
ggplot(aes(x = gene_abbreviation, y = wgs_isolate_id)) +
geom_tile(aes(fill = presence_gene), color = "black") +
scale_fill_manual(labels = c("No", "Yes"), values = c("white", "#009999")) +
labs(y = "Isolate ID", x = "ARGs",fill="Presence gene",title="Other") +
scale_y_discrete(limits = rev) +
theme(plot.title=element_text(face="italic"),axis.text.x = element_text(angle = 45, hjust = 1))
# Multipanel figure with different species
amr_plot <- ggarrange(amr_plot_1 + rremove("xlab")+ rremove("ylab"),amr_plot_2 + rremove("xlab")+ rremove("ylab"),amr_plot_3 + rremove("xlab")+ rremove("ylab"),amr_plot_4 + rremove("xlab")+ rremove("ylab"),amr_plot_5 + rremove("xlab")+ rremove("ylab"),amr_plot_6 + rremove("xlab")+ rremove("ylab"),amr_plot_7 + rremove("xlab")+ rremove("ylab"), ncol = 1, nrow = 7, common.legend = TRUE,align ="v",labels = c("A", "B", "C","D","E","F","G"),heights = c(1.25,4.5,4.25,1.75,3,3.5,2.25))
annotate_figure(amr_plot,
bottom = text_grob("Gene", color = "black",
hjust = 0.75, x = 0.5),
left = text_grob("Isolate ID", color = "black", rot = 90, size = 12))
ggsave(plot = last_plot(),"./figures/amr.png",width = 20, height = 40, units = "cm")
# ---- plasmid genes ----
# Staphylococcus aureus
plasmid_plot_1 <- plasmid_sau %>%
ggplot(aes(x = gene_abbreviation, y = fct_reorder(plasmid_sau$wgs_isolate_id,plasmid_sau$wgs_id))) +
geom_tile(aes(fill = presence_gene), color = "black") +
scale_fill_manual(labels = c("No", "Yes"), values = c("white", "#009999")) +
labs(y = "Isolate ID", x = "Gene ID",fill="Presence gene",title="Staphylococcus aureus") +
scale_y_discrete(limits = rev) +
theme(plot.title=element_text(face="italic"),axis.text.x=element_blank(),axis.title.x = element_blank())
# Staphylococcus chromogenes
plasmid_plot_2 <- plasmid_sch %>%
ggplot(aes(x = gene_abbreviation, y = fct_reorder(plasmid_sch$wgs_isolate_id,plasmid_sch$wgs_id))) +
geom_tile(aes(fill = presence_gene), color = "black") +
scale_fill_manual(labels = c("No", "Yes"), values = c("white", "#009999")) +
labs(y = "Isolate ID", x = "Gene ID",fill="Presence gene",title="Staphylococcus chromogenes") +
scale_y_discrete(limits = rev) +
theme(plot.title=element_text(face="italic"),axis.text.x=element_blank(),axis.title.x = element_blank())
# Staphylococcus haemolyticus
plasmid_plot_3 <- plasmid_shaem %>%
ggplot(aes(x = gene_abbreviation, y = fct_reorder(plasmid_shaem$wgs_isolate_id,plasmid_shaem$wgs_id))) +
geom_tile(aes(fill = presence_gene), color = "black") +
scale_fill_manual(labels = c("No", "Yes"), values = c("white", "#009999")) +
labs(y = "Isolate ID", x = "Gene ID",fill="Presence gene",title="Staphylococcus haemolyticus") +
scale_y_discrete(limits = rev) +
theme(plot.title=element_text(face="italic"),axis.text.x=element_blank(),axis.title.x = element_blank())
# Staphylococcus sciuri
plasmid_plot_4 <- plasmid_ssc %>%
ggplot(aes(x = gene_abbreviation, y = fct_reorder(plasmid_ssc$wgs_isolate_id,plasmid_ssc$wgs_id))) +
geom_tile(aes(fill = presence_gene), color = "black") +
scale_fill_manual(labels = c("No", "Yes"), values = c("white", "#009999")) +
labs(y = "Isolate ID", x = "Gene ID",fill="Presence gene",title="Mammaliicoccus sciuri") +
scale_y_discrete(limits = rev) +
theme(plot.title=element_text(face="italic"),axis.text.x=element_blank(),axis.title.x = element_blank())
#Staphylococcus succinus
plasmid_plot_5 <- plasmid_ssuc %>%
ggplot(aes(x = gene_abbreviation, y = fct_reorder(plasmid_ssuc$wgs_isolate_id,plasmid_ssuc$wgs_id))) +
geom_tile(aes(fill = presence_gene), color = "black") +
scale_fill_manual(labels = c("No", "Yes"), values = c("white", "#009999")) +
labs(y = "Isolate ID", x = "Gene ID",fill="Presence gene",title="Staphylococcus succinus") +
scale_y_discrete(limits = rev) +
theme(plot.title=element_text(face="italic"),axis.text.x=element_blank(),axis.title.x = element_blank())
# Staphylococcus xylosus/saprophytiucs
plasmid_plot_6 <- plasmid_sxyl_spxyl %>%
ggplot(aes(x = gene_abbreviation, y = wgs_isolate_id)) +
geom_tile(aes(fill = presence_gene), color = "black") +
scale_fill_manual(labels = c("No", "Yes"), values = c("white", "#009999")) +
labs(y = "Isolate ID", x = "Gene ID",fill="Presence gene",title="Staphylococcus xylosus/pseudoxylosus") +
scale_y_discrete(limits = rev) +
theme(plot.title=element_text(face="italic"),axis.text.x=element_blank(),axis.title.x = element_blank())
# Others
plasmid_plot_7 <- plasmid_other %>%
ggplot(aes(x = gene_abbreviation, y = wgs_isolate_id)) +
geom_tile(aes(fill = presence_gene), color = "black") +
scale_fill_manual(labels = c("No", "Yes"), values = c("white", "#009999")) +
labs(y = "Isolate ID", x = "Plasmids",fill="Presence gene",title="Other") +
scale_y_discrete(limits = rev) +
theme(plot.title=element_text(face="italic"),axis.text.x = element_text(angle = 45, hjust = 1))
# Multipanel figure with different species
plasmid_plot <- ggarrange(plasmid_plot_1 + rremove("xlab")+ rremove("ylab"),plasmid_plot_2 + rremove("xlab")+ rremove("ylab"),plasmid_plot_3 + rremove("xlab")+ rremove("ylab"),plasmid_plot_4 + rremove("xlab")+ rremove("ylab"),plasmid_plot_5 + rremove("xlab")+ rremove("ylab"),plasmid_plot_6 + rremove("xlab")+ rremove("ylab"),plasmid_plot_7 + rremove("xlab")+ rremove("ylab"), ncol = 1, nrow = 7, common.legend = TRUE,align ="v",labels = c("A", "B", "C","D","E","F","G"),heights = c(1.25,4.5,4.25,1.75,3,3.5,2.25))
annotate_figure(plasmid_plot,
bottom = text_grob("Gene", color = "black",
hjust = 0.75, x = 0.5),
left = text_grob("Isolate ID", color = "black", rot = 90, size = 12))
ggsave(plot = last_plot(),"./figures/plasmid.png",width = 20, height = 40, units = "cm")
amr_plasmid_plot <- ggarrange(
amr_plot_1 + rremove("xlab") + rremove("ylab"),
plasmid_plot_1 + rremove("xlab") + rremove("ylab") ,
amr_plot_2 + rremove("xlab") + rremove("ylab"),
plasmid_plot_2 + rremove("xlab") + rremove("ylab") ,
amr_plot_3 + rremove("xlab") + rremove("ylab"),
plasmid_plot_3 + rremove("xlab") + rremove("ylab") ,
amr_plot_4 + rremove("xlab") + rremove("ylab"),
plasmid_plot_4 + rremove("xlab") + rremove("ylab") ,
amr_plot_5 + rremove("xlab") + rremove("ylab"),
plasmid_plot_5 + rremove("xlab") + rremove("ylab") ,
amr_plot_6 + rremove("xlab") + rremove("ylab"),
plasmid_plot_6 + rremove("xlab") + rremove("ylab") ,
amr_plot_7 + rremove("ylab"),
plasmid_plot_7 + rremove("ylab") ,
ncol = 2, nrow = 7, common.legend = TRUE, align = "v",
labels = c("A1", "A2", "B1", "B2", "C1", "C2", "D1", "D2", "E1", "E2", "F1", "F2", "G1", "G2"),
heights = c(1.25,4.5, 4.25, 1.75,3,3.5, 2.5)
)
annotate_figure(amr_plasmid_plot, left = text_grob("Isolate ID", color = "black", rot = 90, size = 12))
ggsave(plot = last_plot(),"./figures/figure_11.pdf",width = 40, height = 40, units = "cm",dpi=600)
ggsave(plot = last_plot(),"./figures/figure_11.png",width = 40, height = 40, units = "cm",dpi=600)
ggsave(plot = last_plot(),"./figures/figure_11.jpeg",width = 40, height = 40, units = "cm",dpi=600)